Open Access Repository

Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes

Davey, JR, Estevez, E, Thomson, RE, Whitham, M, Watt, KI, Hagg, A, Qian, H, Henstridge, DC ORCID: 0000-0003-4988-767X, Ludlow, H, Hedger, MP, McGee, SL, Coughlan, MT, Febbraio, MA and Gregorevic, P 2020 , 'Intravascular Follistatin gene delivery improves glycemic control in a mouse model of type 2 diabetes' , FASEB Journal, vol. 34, no. 4 , pp. 5697-5714 , doi: 10.1096/fj.201802059RRR.

Full text not available from this repository.

Abstract

Type 2 diabetes (T2D) manifests from inadequate glucose control due to insulin resistance, hypoinsulinemia, and deteriorating pancreatic β-cell function. The pro-inflammatory factor Activin has been implicated as a positive correlate of severity in T2D patients, and as a negative regulator of glucose uptake by skeletal muscle, and of pancreatic β-cell phenotype in mice. Accordingly, we sought to determine whether intervention with the Activin antagonist Follistatin can ameliorate the diabetic pathology. Here, we report that an intravenous Follistatin gene delivery intervention with tropism for striated muscle reduced the serum concentrations of Activin B and improved glycemic control in the db/db mouse model of T2D. Treatment reversed the hyperglycemic progression with a corresponding reduction in the percentage of glycated-hemoglobin to levels similar to lean, healthy mice. Follistatin gene delivery promoted insulinemia and abundance of insulin-positive pancreatic β-cells, even when treatment was administered to mice with advanced diabetes, supporting a mechanism for improved glycemic control associated with maintenance of functional β-cells. Our data demonstrate that single-dose intravascular Follistatin gene delivery can ameliorate the diabetic progression and improve prognostic markers of disease. These findings are consistent with other observations of Activin-mediated mechanisms exerting deleterious effects in models of obesity and diabetes, and suggest that interventions that attenuate Activin signaling could help further understanding of T2D and the development of novel T2D therapeutics.

Item Type: Article
Authors/Creators:Davey, JR and Estevez, E and Thomson, RE and Whitham, M and Watt, KI and Hagg, A and Qian, H and Henstridge, DC and Ludlow, H and Hedger, MP and McGee, SL and Coughlan, MT and Febbraio, MA and Gregorevic, P
Keywords: Activin, diabetes, Follistatin, gene therapy, skeletal muscle
Journal or Publication Title: FASEB Journal
Publisher: The Federation
ISSN: 0892-6638
DOI / ID Number: 10.1096/fj.201802059RRR
Copyright Information:

© 2020 Federation of American Societies for Experimental Biology

Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP