Open Access Repository

Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery

Christie, KM, Smith, AP, Rawnsley, RP ORCID: 0000-0001-5381-0208, Harrison, MT ORCID: 0000-0001-7425-452X and Eckard, RJ 2020 , 'Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery' , Agricultural Systems, vol. 182 , pp. 1-13 , doi: 10.1016/j.agsy.2020.102847.

Full text not available from this repository.


Evidence from farm level studies indicates that there is potential to improve nitrogen (N) fertilizer efficiency of Australian dairy farms. Increasing N fertilizer application rates to drive pasture dry matter production beyond an agronomic or economical optimum has the potential to result in detrimental environmental outcomes. Our study, using the biophysical whole-farm systems model DairyMod, modelled a range of N fertilizer rates on total N loss for five dairy sites through south-eastern Australia, using 18 years of historical climate. Nitrogen accumulation in plant biomass and soil N accumulation within and below the rootzone were estimated. Total N loss, in the form of volatilization, leaching, runoff and denitrification lost to the environment were also estimated. The reduction in N fertilizer inputs required to achieve 90% of relative yield (Y90), relative to maximum pasture production (Ymax), was > 50% across all sites and seasons. The associated reduction in total N loss when fertilizer was reduced from Ymax to Y90, varied between 34% and 74%, depending on site and season. Nitrogen recovery (proportion of N recovered in biomass relative to N fertilizer applied) exceeded 100% with lower N fertilizer rates (-1 month-1) for most sites and seasons. Demand for N was high during spring due to high pasture growth and this was supported via N mineralization and legacy N build-up in winter. Nitrate leaching risk was highest in winter for the four temperate sites and autumn at the subtropical site. This study demonstrated the benefits of developing site and seasonal-specific N fertilizer best management practice guidelines that are both economical and environmentally beneficial. When considering whether to add more fertilizer, the value of additional pasture production needs to be weighed up against environmental N losses and the cost of additional N fertilizer to achieve this. The relationship between seasonal soil and climatic conditions and N loss and recovery were also examined for one rainfed site. As this study does not consider the externalities associated with N loss, recommendations need to be considered and amended in the context of location specificity and seasonal climatic conditions.

Item Type: Article
Authors/Creators:Christie, KM and Smith, AP and Rawnsley, RP and Harrison, MT and Eckard, RJ
Keywords: environmental N loss, DairyMod, nitrogen recovery, leaching, denitrification, volatilization, dairy, nitrogen, nitrate, ammonium, nitrous oxides, pasture, ryegrass, modelling, DairyMod, N losses
Journal or Publication Title: Agricultural Systems
Publisher: Elsevier Sci Ltd
ISSN: 0308-521X
DOI / ID Number: 10.1016/j.agsy.2020.102847
Copyright Information:

© 2020 Elsevier Ltd. All rights reserved.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page