Open Access Repository

Size fractionation and bioavailability of iron released from melting sea ice in a subpolar marginal sea

Kanna, N, Lannuzel, D ORCID: 0000-0001-6154-1837, van der Merwe, P ORCID: 0000-0002-7428-8030 and Nishioka, J 2020 , 'Size fractionation and bioavailability of iron released from melting sea ice in a subpolar marginal sea' , Marine Chemistry, vol. 221 , pp. 1-8 , doi: 10.1016/j.marchem.2020.103774.

Full text not available from this repository.


We incubated Fe-limited seawater with sea-ice sections to evaluate which forms of iron (Fe) released from melting sea ice can favor phytoplankton growth. Biological availability (bioavailability) was approximated by fractionating Fe into soluble (0.2 μm) sizes. Results show that phytoplankton thrived after the addition of sea ice. While the labile particulate fraction dominated the total Fe pool in sea ice, the concentration of dissolved Fe (<0.2 μm) was likely not enough to support phytoplankton growth in seawater over time. The concentrations and molar ratios of Fe, Mn and Al in acid-digested particles indicate that particulate Fe in sea ice were derived from multiple origins. Specifically, the Fe to Al ratio in sea ice was higher than in lithogenic material, suggesting that the sea ice were enriched with biogenic material. Our study suggests that particulate Fe from sea ice should be considered an important source of biologically available Fe in ice-covered marginal seas.

Item Type: Article
Authors/Creators:Kanna, N and Lannuzel, D and van der Merwe, P and Nishioka, J
Keywords: sea ice, iron, biogeochemistry, Antarctica, bioavailability, size fraction
Journal or Publication Title: Marine Chemistry
Publisher: Elsevier Science Bv
ISSN: 0304-4203
DOI / ID Number: 10.1016/j.marchem.2020.103774
Copyright Information:

© 2020 Elsevier B.V. All rights reserved.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page