Open Access Repository

Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota

Minich, JJ, Poore, GD, Jantawongsri, K, Johnston, CJ, Bowie, K, Bowman, jp ORCID: 0000-0002-4528-9333, Knight, R, Nowak, B ORCID: 0000-0002-0347-643X and Allen, EE 2020 , 'Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota' , Applied and Environmental Microbiology, vol. 86, no. 12 , pp. 1-19 , doi: 10.1128/AEM.00411-20.

Full text not available from this repository.

Abstract

Successful rearing of fish in hatcheries is critical for conservation, recreational fishing, commercial fishing through wild stock enhancements, and aquaculture production. Flowthrough (FT) hatcheries require more water than recirculating aquaculture systems (RAS), which enable up to 99% of their water to be recycled, thus significantly reducing environmental impacts. Here, we evaluated the biological and physical microbiome interactions of three Atlantic salmon hatcheries (RAS n = 2, FT n = 1). Gill, skin, and digesta from six juvenile fish along with tank biofilms and water were sampled from tanks in each of the hatcheries (60 fish across 10 tanks) to assess the built environment and mucosal microbiota using 16S rRNA gene sequencing. The water and tank biofilm had more microbial richness than fish mucus, while skin and digesta from RAS fish had 2 times the richness of FT fish. Body sites each had unique microbiomes (P P < 0.001), with RAS being more similar. A strong association between the tank and fish microbiome was observed. Water and tank biofilm richness was positively correlated with skin and digesta richness. Strikingly, the gill, skin, and digesta communities were more similar to that in the origin tank biofilm than those in all other experimental tanks, suggesting that the tank biofilm has a direct influence on fish-associated microbial communities. Lastly, microbial diversity and mucous cell density were positively associated with fish growth and length. The results from this study provide evidence for a link between the tank microbiome and the fish microbiome, with the skin microbiome as an important intermediate.

Item Type: Article
Authors/Creators:Minich, JJ and Poore, GD and Jantawongsri, K and Johnston, CJ and Bowie, K and Bowman, jp and Knight, R and Nowak, B and Allen, EE
Keywords: Atlantic salmon, hatcheries, microbiology, 16S, aquaculture, built environment, environmental microbiology, microbial ecology, microbiome
Journal or Publication Title: Applied and Environmental Microbiology
Publisher: American Society for Microbiology
ISSN: 1098-5336
DOI / ID Number: 10.1128/AEM.00411-20
Copyright Information:

Copyright 2020 American Society for Microbiology

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP