Open Access Repository

Genome analysis of two novel Synechococcus phages that lack common auxiliary metabolic genes: possible reasons and ecological insights by comparative analysis of cyanomyoviruses

Downloads

Downloads per month over past year

Jiang, Tong, Guo, C, Wang, M, Wang, M, Zhang, X, Liu, Y, Liang, Y, Jiang, Y, He, H, Shao, H and McMinn, A ORCID: 0000-0002-2133-3854 2020 , 'Genome analysis of two novel Synechococcus phages that lack common auxiliary metabolic genes: possible reasons and ecological insights by comparative analysis of cyanomyoviruses' , Viruses, vol. 12, no. 8 , pp. 1-21 , doi: 10.3390/v12080800.

[img]
Preview
PDF
140093 - Genome...pdf | Download (2MB)

| Preview

Abstract

The abundant and widespread unicellular cyanobacteria Synechococcus plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected Synechococcus MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34,their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to Synechococcus phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution.

Item Type: Article
Authors/Creators:Jiang, Tong and Guo, C and Wang, M and Wang, M and Zhang, X and Liu, Y and Liang, Y and Jiang, Y and He, H and Shao, H and McMinn, A
Keywords: virus, Synechococus phage, cyanophage, Myoviridae, AMGs, genome, photosynthesis
Journal or Publication Title: Viruses
Publisher: MDPIAG
ISSN: 1999-4915
DOI / ID Number: 10.3390/v12080800
Copyright Information:

Copyright 2020 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP