Open Access Repository

A novel conflict measurement in decision making and its application in fault diagnosis

Downloads

Downloads per month over past year

Xiao, F, Cao, Z ORCID: 0000-0003-3656-0328 and Jolfaei, A 2020 , 'A novel conflict measurement in decision making and its application in fault diagnosis' , IEEE Transactions on Fuzzy Systems , pp. 1-13 , doi: 10.1109/TFUZZ.2020.3002431.

[img]
Preview
PDF
139493 - A nove...pdf | Download (1MB)

| Preview

Abstract

Dempster-Shafer evidence (DSE) theory, which allows combining pieces of evidence from different data sources to derive a degree of belief function that is a type of fuzzy measure, is a general framework for reasoning with uncertainty. In this framework, how to optimally manage the conflicts of multiple pieces of evidence in DSE remains an open issue to support decision making. The existing conflict measurement approaches can achieve acceptable outcomes but do not fully consider the optimization at the decision-making level using the novel measurement of conflicts. In this paper, we proposed a novel evidential correlation coefficient (ECC) for belief functions by measuring the conflict between two pieces of evidence in decision making. Then, we investigated the properties of our proposed evidential correlation and conflict coefficients, which are all proven to satisfy the desirable properties for conflict measurement, including nonnegativity, symmetry, boundedness, extreme consistency, and insensitivity to refinement. We also presented several examples and comparisons to demonstrate the superiority of our proposed ECC method. Finally, we applied the proposed ECC in a decision-making application of motor rotor fault diagnosis, which verified the practicability and effectiveness of our proposed novel measurement.

Item Type: Article
Authors/Creators:Xiao, F and Cao, Z and Jolfaei, A
Keywords: Dempster-Shafer evidence theory, conflict management, evidential correlation coefficient, belief function, fuzzy measure, basic belief assignments, decision making, fault diagnosis, decision making
Journal or Publication Title: IEEE Transactions on Fuzzy Systems
Publisher: IEEE-Inst Electrical Electronics Engineers Inc
ISSN: 1063-6706
DOI / ID Number: 10.1109/TFUZZ.2020.3002431
Copyright Information:

Copyright 2020 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP