Open Access Repository

Estimating maturity from size-at-age data: are real-world fisheries datasets up to the task?

Downloads

Downloads per month over past year

Wootton, HF, Morrongiello, JR and Audzijonyte, A ORCID: 0000-0002-9919-9376 2020 , 'Estimating maturity from size-at-age data: are real-world fisheries datasets up to the task?' , Reviews in Fish Biology and Fisheries, vol. 30 , pp. 681-697 , doi: 10.1007/s11160-020-09617-9.

[img] PDF (Author Accepted Manuscript)
141859 - Estima...pdf | Document not available for request/download
Full text restricted until 19 August 2021.

Abstract

The size and age at which individuals mature is rapidly changing due to plastic and evolved responses to fisheries harvest and global warming. Understanding the nature of these changes is essential because maturity schedules are critical in determining population demography and ultimately, the economic value and viability of fisheries. Detecting maturity changes is, however, practically difficult and costly. A recently proposed biphasic growth modelling likelihood profiling method offers great potential as it can statistically estimate age-at-maturity from population-level size-at-age data, using the change-point in growth that occurs at maturity. Yet, the performance of the method on typical marine fisheries datasets remains untested. Here, we assessed the suitability of 12 North Sea and Australian species’ datasets for the likelihood profiling approach. The majority of the fisheries datasets were unsuitable as they had too small sample sizes or too large size-at-age variation. Further, datasets that did satisfy data requirements generally showed no correlation between empirical and model-derived maturity estimates. To understand why the biphasic approach had low performance we explored its sensitivity using simulated datasets. We found that method performance for marine fisheries datasets is likely to be low because of: (1) truncated age structures due to intensive fishing, (2) an under-representation of young individuals in datasets due to common fisheries-sampling protocols, and (3) large intrapopulation variability in growth curves. To improve our ability to detect maturation changes from population level size-at-age data we need to improve data collection protocols for fisheries monitoring.

Item Type: Article
Authors/Creators:Wootton, HF and Morrongiello, JR and Audzijonyte, A
Keywords: fisheries management, maturation, statistical modelling, stock assessment, biphasic growth model, Lester model likelihood profiling, statistical maturity estimates, fisheries-induced evolution, maturity changes, simulations, life history
Journal or Publication Title: Reviews in Fish Biology and Fisheries
Publisher: Kluwer Academic Publ
ISSN: 0960-3166
DOI / ID Number: 10.1007/s11160-020-09617-9
Copyright Information:

Copyright 2020 Springer Nature Switzerland AG. This is a post-peer-review, pre-copyedit version of an article published in Reviews in Fish Biology and Fisheries. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11160-020-09617-9

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP