Open Access Repository

Pathogen growth when implementing 'Time as a Public Health Control'

Tamplin, ML ORCID: 0000-0003-2652-2408 and Ratkowsky, DA 2021 , 'Pathogen growth when implementing 'Time as a Public Health Control'' , Food Microbiology, vol. 96 , pp. 1-7 , doi: 10.1016/j.fm.2020.103718.

Full text not available from this repository.

Abstract

Food regulatory authorities permit the use of Time as Public Health Control (TPHC) for handling foods that potentially support the growth of pathogenic bacteria. Considering the widespread use of TPHC in food service operations, few reports quantitatively describe potential pathogen growth when these protocols are implemented. A worst-case growth rate model was built from the highest growth rates predicted by ComBase broth-based models for six pathogens. A separate worst-case growth model was constructed from growth rates in ComBase database records. The maximum estimated pathogen growth in 4 h, assuming no lag phase, ranged from 0.006 log CFU at 5 °C to 6.16 log CFU at 44 °C, with 3.1 log CFU at 25 °C. In addition, pathogen growth when implementing TPHC could exceed the 1- and 3-log limits recommended for food challenge tests. The use of predictive models in development of TPHC criteria may provide more fail-safe strategies for managing microbial hazards in potentially hazardous food. This strategy could also reduce food waste and promote the use of temperature sensors in food supply chains.

Item Type: Article
Authors/Creators:Tamplin, ML and Ratkowsky, DA
Keywords: food safety, ComBase, predictive model, time/temperature control, food regulations
Journal or Publication Title: Food Microbiology
Publisher: Academic Press Ltd Elsevier Science Ltd
ISSN: 0740-0020
DOI / ID Number: 10.1016/j.fm.2020.103718
Copyright Information:

© 2020 Elsevier Ltd. All rights reserved

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP