Open Access Repository

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections

Downloads

Downloads per month over past year

Kwiatkowski, L, Torres, O, Bopp, L, Aumont, O, Chamberlain, M, Christian, JR, Dunne, JP, Gehlen, M, Ilyina, T, John, JG, Lenton, A, Li, H, Lovenduski, NS, Orr, JC, Palmieri, J, Santana-Falcon, Y, Schwinger, J, Seferian, R, Stock, CA, Tagliabue, A, Takano, Y, Tjiputra, J, Toyama, K, Tsujino, H, Watanabe, M, Yamamoto, A, Yool, A and Ziehn, T 2020 , 'Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections' , Biogeosciences, vol. 17, no. 13 , pp. 3439-3470 , doi: 10.5194/bg-17-3439-2020.

[img]
Preview
PDF
143553 - Twenty...pdf | Download (11MB)

| Preview

Abstract

Anthropogenic climate change is projected to lead to ocean warming, acidification, deoxygenation, reductions in near-surface nutrients, and changes to primary production, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) that were forced under the CMIP6 Shared Socioeconomic Pathways (SSPs). Projections are compared to those from the previous generation (CMIP5) forced under the Representative Concentration Pathways (RCPs). A total of 10 CMIP5 and 13 CMIP6 models are used in the two multi-model ensembles. Under the high-emission scenario SSP5-8.5, the multi-model global mean change (2080–2099 mean values relative to 1870–1899) ± the inter-model SD in sea surface temperature, surface pH, subsurface (100–600 m) oxygen concentration, euphotic (0–100 m) nitrate concentration, and depth-integrated primary production is +3.47±0.78 ∘C, −0.44±0.005, −13.27±5.28, −1.06±0.45 mmol m−3 and −2.99±9.11 %, respectively. Under the low-emission, high-mitigation scenario SSP1-2.6, the corresponding global changes are +1.42±0.32 ∘C, −0.16±0.002, −6.36±2.92, −0.52±0.23 mmol m−3, and −0.56±4.12 %. Projected exposure of the marine ecosystem to these drivers of ocean change depends largely on the extent of future emissions, consistent with previous studies. The ESMs in CMIP6 generally project greater warming, acidification, deoxygenation, and nitrate reductions but lesser primary production declines than those from CMIP5 under comparable radiative forcing. The increased projected ocean warming results from a general increase in the climate sensitivity of CMIP6 models relative to those of CMIP5. This enhanced warming increases upper-ocean stratification in CMIP6 projections, which contributes to greater reductions in upper-ocean nitrate and subsurface oxygen ventilation. The greater surface acidification in CMIP6 is primarily a consequence of the SSPs having higher associated atmospheric CO2 concentrations than their RCP analogues for the same radiative forcing. We find no consistent reduction in inter-model uncertainties, and even an increase in net primary production inter-model uncertainties in CMIP6, as compared to CMIP5.

Item Type: Article
Authors/Creators:Kwiatkowski, L and Torres, O and Bopp, L and Aumont, O and Chamberlain, M and Christian, JR and Dunne, JP and Gehlen, M and Ilyina, T and John, JG and Lenton, A and Li, H and Lovenduski, NS and Orr, JC and Palmieri, J and Santana-Falcon, Y and Schwinger, J and Seferian, R and Stock, CA and Tagliabue, A and Takano, Y and Tjiputra, J and Toyama, K and Tsujino, H and Watanabe, M and Yamamoto, A and Yool, A and Ziehn, T
Keywords: ocean warming, acidification, deoxygenation, upper-ocean nutrient, primary production decline, CMIP6 model projections
Journal or Publication Title: Biogeosciences
Publisher: Copernicus GmbH
ISSN: 1726-4170
DOI / ID Number: 10.5194/bg-17-3439-2020
Copyright Information:

Copyright 2020 the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP