Open Access Repository

Timing-specific effects of single-session M1 anodal tDCS on motor sequence retention in healthy older adults


Downloads per month over past year

Puri, R ORCID: 0000-0002-0231-1369, Hinder, MR ORCID: 0000-0002-5240-4790, Kruger, M and Summers, JJ 2021 , 'Timing-specific effects of single-session M1 anodal tDCS on motor sequence retention in healthy older adults' , Neuroimage, vol. 1, no. 1 , doi: 10.1016/j.ynirp.2021.100009.

144085-Timing-s...pdf | Download (906kB)

| Preview


Anodal transcranial direct current stimulation (tDCS) may assist in counteracting age-related decline in cognitive and motor functions. The current study investigated the potential impact of anodal tDCS, and the timing of its application, in mitigating age-related deficits in motor sequence learning.Forty-eight healthy older adults received, over the primary motor cortex (M1), tDCS – anodal and sham at least 1 week apart – before, during or after an explicit sequence-learning task with electrophysiological measures of corticospinal excitability (CSE) and short-interval intracortical inhibition (SICI) also obtained.Bayesian analyses revealed no generalised benefit of anodal tDCS to motor acquisition and immediate retention. Furthermore, there was not enough evidence to support timing-specific stimulation differences on performance during acquisition and immediate retention. However, performance at delayed retention – measured 24 ​h after acquisition – was worse in the anodal (13.1%) than sham (17.6%) tDCS session for the group receiving tDCS during sequence acquisition, but not before (anodal: 18.4%; sham: 16.7%) or after (anodal: 18.5%; sham: 16.3%) it. No corresponding task-specific stimulation-based changes in CSE and SICI were observed.Thus, single-session M1 anodal tDCS in healthy older adults not only proved ineffective in facilitating sequence acquisition and immediate retention but also, when administered during sequence learning, proved detrimental to delayed retention. Overall, these null and negative results may have implications for the use of tDCS in clinical and rehabilitative settings, especially in the elderly.

Item Type: Article
Authors/Creators:Puri, R and Hinder, MR and Kruger, M and Summers, JJ
Keywords: transcranial direct current stimulation, transcranial magnetic stimulation, ageing, motor, null, bayes
Journal or Publication Title: Neuroimage
Publisher: Academic Press Inc Elsevier Science
ISSN: 1053-8119
DOI / ID Number: 10.1016/j.ynirp.2021.100009
Copyright Information:

Copyright 2021 the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page