Open Access Repository

Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study

Downloads

Downloads per month over past year

Li, F, Jiang, L, Liao, Y, Si, Y, Yi, C, Zhang, Y, Zhu, X, Yang, Z, Yao, D, Cao, Z ORCID: 0000-0003-3656-0328 and Xu, P 2021 , 'Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study' , Journal of Neural Engineering, vol. 18, no. 4 , pp. 1-17 , doi: 10.1088/1741-2552/ac0d41.

[img]
Preview
PDF (Pre-print)
145189 - Brain ...pdf | Download (4MB)

| Preview

Abstract

Objective:Exploring the temporal variability in spatial topology during the resting state attracts growing interest and becomes increasingly useful to tackle the cognitive process of brain networks. In particular, the temporal brain dynamics during the resting state may be delineated and quantified aligning with cognitive performance, but few studies investigated the temporal variability in the electroencephalogram (EEG) network as well as its relationship with cognitive performance. Approach:In this study, we proposed an EEG-based protocol to measure the nonlinear complexity of the dynamic resting-state network by applying the fuzzy entropy. To further validate its applicability, the fuzzy entropy was applied into simulated and two independent datasets (i.e. decision-making and P300). Main results:The simulation study first proved that compared to the existing methods, this approach could not only exactly capture the pattern dynamics in time series but also overcame the magnitude effect of time series. Concerning the two EEG datasets, the flexible and robust network architectures of the brain cortex at rest were identified and distributed at the bilateral temporal lobe and frontal/occipital lobe, respectively, whose variability metrics were found to accurately classify different groups. Moreover, the temporal variability of resting-state network property was also either positively or negatively related to individual cognitive performance. Significance:This outcome suggested the potential of fuzzy entropy for evaluating the temporal variability of the dynamic resting-state brain networks, and the fuzzy entropy is also helpful for uncovering the fluctuating network variability that accounts for the individual decision differences.

Item Type: Article
Authors/Creators:Li, F and Jiang, L and Liao, Y and Si, Y and Yi, C and Zhang, Y and Zhu, X and Yang, Z and Yao, D and Cao, Z and Xu, P
Journal or Publication Title: Journal of Neural Engineering
Publisher: Institute of Physics Publishing Ltd.
ISSN: 1741-2552
DOI / ID Number: 10.1088/1741-2552/ac0d41
Copyright Information:

This is the version of the article before peer review or editing, as submitted by an author to Journal of neeral Engineering. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it.  The Version of Record is available online at https://iopscience.iop.org/article/10.1088/1741-2552/ac0d41

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP