Open Access Repository

In-situ growth of metal-organic frameworks in a reactive 3D printable material

Waheed, S, Rodas, M, Kaur, H, Kilah, NL ORCID: 0000-0002-0615-3791, Paull, B ORCID: 0000-0001-6373-6582 and Maya, F ORCID: 0000-0003-1458-736X 2021 , 'In-situ growth of metal-organic frameworks in a reactive 3D printable material' , Applied Materials Today, vol. 22 , pp. 1-8 , doi: 10.1016/j.apmt.2020.100930.

Full text not available from this repository.


The additive manufacturing (3D printing) of porous materials will open unprecedented opportunities to design advanced supports for extraction and separation. Here we have fabricated a reactive ZnO nanoparticle (NP)/thermoplastic composite filament for 3D printing via fused deposition modeling. The composite filament contains a 10 wt% ZnO-NPs incorporated in the thermoplastic acrylonitrile butadiene styrene (ABS). After 3D printing with the ZnO-NP/ABS filament, crystals of the zeolitic imidazolate framework-8 (ZIF-8) are grown in-situ on the 3D printed part. In-situ ZIF-8 crystallization is achieved by a mild chemical conversion mechanism at room temperature, converting the embedded ZnO nanoparticles into ZIF-8 crystals which are subsequently expressed on the surface of the 3D printed device. The resulting ZIF-8@ZnO-NP/ABS 3D printed devices were applied to the extraction of malachite green as a model water pollutant, and delivered superior performance compared with an identical device made of pure ABS, or the precursor ZnO-NP/ABS. For comparison purposes, a ZIF-8/ABS filament was fabricated with a 10 wt% load of presynthesized ZIF-8 crystals. The in-situ ZIF-8 growth approach again showed enhanced extraction performance in comparison with materials directly loaded with ZIF-8 crystals, with an increase of 48% in the extraction of malachite green. This is the first example of ZnO to ZIF-8 chemical conversion on 3D printed devices.

Item Type: Article
Authors/Creators:Waheed, S and Rodas, M and Kaur, H and Kilah, NL and Paull, B and Maya, F
Keywords: 3D printing, zinc oxide nanoparticles, metal-organic frameworks, zeolitic imidazolate frameworks dye remova
Journal or Publication Title: Applied Materials Today
Publisher: Elsevier Science Bv
ISSN: 2352-9407
DOI / ID Number: 10.1016/j.apmt.2020.100930
Copyright Information:

© 2021 Elsevier Ltd. All rights reserved.

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page