Open Access Repository

Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans

Downloads

Downloads per month over past year

Teng, Z-J, Qin, Q-L, Zhang, W, Li, J, Fu, H-H, Wang, P, Lan, M, Lu, G, He, J, McMinn, A ORCID: 0000-0002-2133-3854, Wang, M, Chen, X-L, Zhang, Y-Z, Chen, Y and Li, C-Y 2021 , 'Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans' , Microbiome, vol. 9 , pp. 1-17 , doi: 10.1186/s40168-021-01153-3.

[img]
Preview
PDF
147230 - Biogeo...pdf | Download (5MB)

| Preview

Abstract

BackgroundDimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth’s surface, contribute significantly to the global oceanic DMS sea-air flux. However, a global overview of DMS and DMSP cycling in polar oceans is still lacking and the key genes and the microbial assemblages involved in DMSP/DMS transformation remain to be fully unveiled.ResultsHere, we systematically investigated the biogeographic traits of 16 key microbial enzymes involved in DMS/DMSP cycling in 60 metagenomic samples from polar waters, together with 174 metagenome and 151 metatranscriptomes from non-polar Tara Ocean dataset. Our analyses suggest that intense DMS/DMSP cycling occurs in the polar oceans. DMSP demethylase (DmdA), DMSP lyases (DddD, DddP, and DddK), and trimethylamine monooxygenase (Tmm, which oxidizes DMS to dimethylsulfoxide) were the most prevalent bacterial genes involved in global DMS/DMSP cycling. Alphaproteobacteria (Pelagibacterales) and Gammaproteobacteria appear to play prominent roles in DMS/DMSP cycling in polar oceans. The phenomenon that multiple DMS/DMSP cycling genes co-occurred in the same bacterial genome was also observed in metagenome assembled genomes (MAGs) from polar oceans. The microbial assemblages from the polar oceans were significantly correlated with water depth rather than geographic distance, suggesting the differences of habitats between surface and deep waters rather than dispersal limitation are the key factors shaping microbial assemblages involved in DMS/DMSP cycling in polar oceans.ConclusionsOverall, this study provides a global overview of the biogeographic traits of known bacterial genes involved in DMS/DMSP cycling from the Arctic and Antarctic oceans, laying a solid foundation for further studies of DMS/DMSP cycling in polar ocean microbiome at the enzymatic, metabolic, and processual levels.

Item Type: Article
Authors/Creators:Teng, Z-J and Qin, Q-L and Zhang, W and Li, J and Fu, H-H and Wang, P and Lan, M and Lu, G and He, J and McMinn, A and Wang, M and Chen, X-L and Zhang, Y-Z and Chen, Y and Li, C-Y
Keywords: polar oceans, DMS/DMSP cycling, geographic distribution, phylogenetic diversity
Journal or Publication Title: Microbiome
Publisher: BioMed Central Ltd.
ISSN: 2049-2618
DOI / ID Number: 10.1186/s40168-021-01153-3
Copyright Information:

Copyright 2021 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP