Open Access Repository

Diffusion vs. linear ballistic accumulation: Different models, different conclusions about the slope of the zROC in recognition memory

Osth, AF, Bora, B, Dennis, S and Heathcote, A ORCID: 0000-0003-4324-5537 2017 , 'Diffusion vs. linear ballistic accumulation: Different models, different conclusions about the slope of the zROC in recognition memory' , Journal of Memory and Language, vol. 96 , pp. 36-61 , doi: 10.1016/j.jml.2017.04.003.

Full text not available from this repository.


The relative amount of variability in memory strength for targets vs. lures in recognition memory is commonly measured using the receiver operating characteristic (ROC) procedure, in which participants are given either a bias manipulation or are instructed to give confidence ratings to probe items. A near universal finding is that targets have higher variability than lures. Ratcliff and Starns (2009) questioned the conclusions of the ROC procedure by demonstrating that accounting for decision noise within a response time model yields different conclusions about relative memory evidence than the ROC procedure yields. In an attempt to better understand the source of the discrepancy, we applied models that include different sources of decision noise, including both the diffusion decision model (DDM) and the linear ballistic accumulator (LBA) model, which both include and lack within-trial noise in evidence accumulation, and compared their estimates of the ratio of standard deviations to those from ROC analysis. Each method produced dramatically different estimates of the relative variability of target items, with the LBA even indicating equal variance in some cases. This stands in contrast to prior work suggesting that the DDM and LBA produce largely similar estimates of relevant model parameters, such as drift rate, boundary separation, and nondecision time. Parameter validation using data from Starns’s (2014) numerosity discrimination data demonstrated that only the DDM was able to correctly reproduce the evidence ratios in the data. These results suggest that the DDM may be providing a more accurate account of lure-to-target variability evidence ratios in recognition memory.

Item Type: Article
Authors/Creators:Osth, AF and Bora, B and Dennis, S and Heathcote, A
Keywords: diffusion decision model, linear ballistic accumulator, receiver operating characteristics, signal detection theory, recognition memory
Journal or Publication Title: Journal of Memory and Language
Publisher: Academic Press Inc Elsevier Science
ISSN: 0749-596X
DOI / ID Number: 10.1016/j.jml.2017.04.003
Copyright Information:

Copyright 2017 Elsevier

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page