Open Access Repository

Salinity effects on guard cell proteome in Chenopodium quinoa

Rasouli, F, Kiani-Pouya, A, Shabala, L ORCID: 0000-0002-5360-8496, Li, L, Tahir, A, Yu, M, Hedrich, R, Chen, Z, Wilson, R ORCID: 0000-0003-0152-4394, Zhang, H and Shabala, S ORCID: 0000-0003-2345-8981 2021 , 'Salinity effects on guard cell proteome in Chenopodium quinoa' , International Journal of Molecular Sciences, vol. 22, no. 1 , pp. 1-22 , doi:

148963 - Salini...pdf | Download (3MB)

| Preview


Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term "response to ABA" were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose-starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions.

Item Type: Article
Authors/Creators:Rasouli, F and Kiani-Pouya, A and Shabala, L and Li, L and Tahir, A and Yu, M and Hedrich, R and Chen, Z and Wilson, R and Zhang, H and Shabala, S
Keywords: quinoa, guard cell, stomata, salt stress, proteomics
Journal or Publication Title: International Journal of Molecular Sciences
Publisher: Molecular Diversity Preservation International
ISSN: 1422-0067
DOI / ID Number:
Copyright Information:

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons 4.0 International (CC BY 4.0) license (

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page