Open Access Repository

Global increase in wildfire risk due to climate-driven declines in fuel moisture

Ellis, TM ORCID: 0000-0002-4410-8676, Bowman, DMJS ORCID: 0000-0001-8075-124X, Jain, P, Flannigan, MD and Williamson, GJ ORCID: 0000-0002-3469-7550 2021 , 'Global increase in wildfire risk due to climate-driven declines in fuel moisture' , Global Change Biology , pp. 1-16 , doi: 10.1111/gcb.16006.

Full text not available from this repository.

Abstract

There is mounting concern that global wildfire activity is shifting in frequency, intensity, and seasonality in response to climate change. Fuel moisture provides a powerful means of detecting changing fire potential. Here, we use global burned area, weather reanalysis data, and the Canadian fire weather index system to calculate fuel moisture trends for multiscale biogeographic regions across a gradient in vegetation productivity. We quantify the proportion of days in the local fire season between 1979 and 2019, where fuel moisture content is below a critical threshold indicating extreme fire potential. We then associate fuel moisture trends over that period to vegetation productivity and comment on its implications for projected anthropogenic climate change. Overall, there is a strong drying trend across realms, biomes, and the productivity gradient. Even where a wetting trend is observed, this often indicates a trend toward increasing fire activity due to an expected increase in fuel production. The detected trends across the productivity gradient lead us to conclude global fire activity will increase with anthropogenic climate change.

Item Type: Article
Authors/Creators:Ellis, TM and Bowman, DMJS and Jain, P and Flannigan, MD and Williamson, GJ
Keywords: fire, climate, fuel, moisture, climate change, climate reanalysis, fire risk, fuel moisture, net primary productivity, pyrogeography, wildfire
Journal or Publication Title: Global Change Biology
Publisher: Wiley-Blackwell Publishing Ltd.
ISSN: 1354-1013
DOI / ID Number: 10.1111/gcb.16006
Copyright Information:

© 2021 John Wiley & Sons Ltd

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page
TOP