

An Automated WSDL Generation and Enhanced SOAP Message Processing
System for Mobile Web Services*

Gil Cheol Park1, Seok Soo Kim1, Gun Tae Bae1, Yang Sok Kim2 and Byeong Ho Kang2

1School of Information & Multimedia, Hannam University
133 Ojung-Dong, Daeduk-Gu, Daejeon 306-791, Korea

gcpark@mail.hannam.ac.kr
2School of Computing, University of Tasmania

Sandy Bay, Tasmania 7001, Australia
{yangsokk, bhkang}@utas.edu.au

* This work is supported by the Asian Office of Aerospace Research and Development (AOARD) (Contract Number:
FA5209-05-P-0253)

Abstract
Web services are key applications in business-to-business,
business-to-customer, and enterprise applications
integration solutions. As the mobile Internet becomes one
of the main methods for information delivery, mobile Web
Services are regarded as a critical aspect of e-business
architecture. In this paper, we proposed a mobile Web
Services middleware that converts conventional Internet
services into mobile Web services. We implemented a
WSDL (Web Service Description Language) builder that
converts HTML/XML into WSDL and a SAOP (Simple
Object Access Protocol) message processor. The former
minimizes the overhead cost of rebuilding mobile Web
Services and enables seamless services between wired
and wireless Internet services. The latter enhances SOAP
processing performance by eliminating the Servlet
container (Tomcat), a required component of typical Web
services implementation. Our system can completely
support standard Web Services protocol, minimizing
communication overhead, message processing time, and
server overload. Finally we compare our empirical
results with those of typical Web Services.

1. Introduction

As the Internet potentials of the mobile Internet are
widely understood, mobile Internet services become a
major mediator in information delivery and in business
transactions. Mobile Internet services, however, still have
physical devices, network and content limitation. Firstly,
mobile devices are limited by system resources such as
smaller screens and less convenient input devices.
Secondly, wireless networks have less bandwidth, less
connection stability, less predictability and a lack of
standardized and higher costs [1, 2]. Lastly, mobile
Internet services also have content limitation because the

amounts of available mobile content are still smaller than
that of wired Internet services, and the consistency
between wired and wireless Internet services is very
critical. Physical device and network limitation make
supporting common Internet standards, such as HTML,
HTTP, and TCP/IP, difficult because they are inefficient
over mobile networks. Therefore, new protocols such as
WAP (Wireless Application Protocol) and WML
(Wireless Markup Language) are proposed to overcome
these limitations. Content limitation encourages
researchers to find methods that support reuse of current
wired Web information. Some researchers focus on the
conversion of HTML documents to mobile Internet
serviceable WML documents and direct access to
databases, to provide efficient information delivery in the
wireless environment [3-7]. However, these researchers
do not focus on the capability that allows applications to
interact over the Internet in an open and flexible way, but
on the capability that provides dynamic wireless Internet
service according to different network and device
environments. The former goal can be achieved by Web
Services, because interactions between Web Services
applications are expected to be independent from the
platform, programming language, middleware, and
applications involved. For this reason, Web Services is
regarded as key applications in business-to-business,
business-to-customer, and enterprise applications
integration solutions [8].

In this paper, we focus on the following two issues:
Automated HTML/XML conversion to WSDL: The

goal system should dynamically generate WSDL files
from existing HTML/XML files. A markup language
converting system is implemented to convert
HTML/XML to WSDL automatically.

Improve SOAP processing efficiency: One main
limitation of Web Service is its inefficient performance

compared with other distributed computing approaches
like Java RMI, CORBA, and DCOM (Distributed
Component Object Model). The use of HTTP and XML
represents a significant increase in run-time cost Web
Services solutions [9-13]. We propose a method that
enhances SOAP processing by changing service
architecture. The typical SOAP processing system
requires the Web Servlet container (e.g. Tomcat) to
execute SOAP. It requires additional process and
communication port. Our hypothesis is that if a system
processes the SOAP message directly, without help from
Web Servlet container, the SOAP performance improves.

The paper is organized as follows: Section 2
summarizes relevant research results, including HTML
conversion and Web services technology. Section 3
explains our HTML conversion implementation, while
Section 4 illustrates our SOAProc system implementation.
In Section 5 we compare our system’s performance with
the typical Web Services implementation approach.
Finally, conclusions and recommendations for further
work are described in Section 6.

2. Literature Review

Researchers usually focus on HTML/WML conversion
because the WAP is an alternative protocol for HTML in
wireless Internet services using Wireless Markup
Language (WML), a small subset of Extensible Markup
Language (XML), to create and deliver content. Kaasinen
et al. [3] and Dugas [14] suggested an HTML/WML
conversion proxy server, which converts HTML-based
Web content automatically, and on-line, to WML. Saha et
al. [6] suggested a middleware that is seamless and
transparently translates a Web site’s existing contents to
mobile devices. Kurbel and Dabkowski [4] proposed a
dynamic user tailed WML content generation by using
JSP (Java Server Pages) and JDBC-ODBC driver.
Magnusson and Stenmark [15] suggested a CMS-based
approach to visualise Web information in a PDA. Pashtan
et al. [7] stressed context-aware wireless Web services,
which can adapt their content to the user’s dynamic
content. Again, we wish to stress these researchers focus
only on HTML/WML conversion, not Web Services
compliable conversion. Therefore, in spite of their
importance, application integration aspects inside and
outside enterprises have not been seriously considered by
the researchers. As the impotence of application
integration over the Internet becomes more important,
nowadays Web Services are critical to any Internet
services. For this reason, we propose a method that
converts HTML to WSDL. The WSDL files are used to
provide Web Services with SOAP messaging protocols.
More detailed explanation about the Web Services and its
implementation issues are discussed in the following
Section.

Web Services, as defined by the W3C Web Services
Architecture Working Group, are “software applications
identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as
XML artefacts. A Web service supports direct interactions
with other software agents using XML-based messages
exchanged via Internet-based protocols.”[16]

There are several Web Services implementation
methods, which differ in their support for class binding,
ease of use, and performance [13]. Among them Apache
Axis (Apache eXtensible Interaction System) with
Tomcat is a popular implementation method. The Apache
Axis project is a follow-on to the Apache SOAP project
and currently has reached version 1.2.1, but it's not part of
the Apache SOAP project. Axis is a completely new
rewrite with emphasis on flexibility and performance. It
supports HTTP SOAP request/response generation, SOAP
message monitoring, dynamic invocation, Web service
deployment, and automatic WSDL generation for Web
services.

Figure 1- Typical Mobile Web Service Implementation

with AXIS and Tomcat

Figure 1 illustrates this standard mobile Web service
implementation. A Web Servlet container, like Tomcat, is
required to provide mobile Web services with Axis. For
wireless Internet service, the server administrator should
write MML (Made Markup Language) to parse Web
contents by using the administrative tool. A MML is used
to generate service request forms or service results by
dynamically parsing the existing Web contents and
sending them to relevant model and clients. When a client,
whether it is wireless or wired client, requests Web
service via SOAP request, Apache Tomcat transfers it to
Axis. Axis interfaces the SOAP request message into a
relevant service by using the service management
function. Service providing models are interfaced by
using a WSDL module is provided by Axis. By
implementing SOAP and distributed computing service,

the system architecture can have a lightweight thin client
structure and the service can be provided in a flexible way.
However, this implementation is not efficient because it
requires additional process for Web Servlet engine
(Tomcat) and communication port. For this reason, we
propose an alternative system that can process SOAP
messages without using Web Servlet engine.

3. HTML/WSDL converter

Our HTML/WSDL content converter system consists
of three sub-modules: the rule script, the script engine,
and the markup language converter. The rule script stores
rules for content reformatting rules, which are created by
the user with the management program. The rules include
personalization information and display structuring
information of mobile devices. Secondly, the script
engine reconstructs contents by using script rules and
client (device) information. The markup language
converter transforms markup language if the markup
language that the server provides differs from what the
client can process. Script rules are created as follows. If a
Web site address is supplied, our system reads and parses
the Web site information. The parsed information is then
presented by using a DOM tree, in which the user can
select and save node information to be served as wireless
Internet content. The JML (Java Mark-up Language)
editor defines XML tags and attributes of the saved items.
TITLE, BASEURL, LINK, HREF, CONTENT, and
ELEMENT are XML tag examples and many attributes
are also available to customize mobile contents.

Figure 2 illustrates the operation of the converter. The
user accesses the HTML/WSDL converter system via
mobile devices and mobile networks. The converter gets
the user’s mobile device information such as display size
and color, and URL information that the user requests by
using the protocol detector. After getting this information,
the converter requests URL information from the Web
server. The Web server generates a HTML response
message and sends it to protocol detector. The protocol
detector then passes this HTTP response message to the
selector with client information. The selector chooses
WSDL information from the HTTP response message by
using the script rules and returns this information to the
protocol detector. The protocol detector in turn sends this
information to the translator, which performs Mark-up
language transformation, image transformation, paging
and cashing. Lastly, the converter sends this processed
result to the user.

4. SOAP Message Processor

In the Web Services, XML based SOAP messages are
used when the clients request Web Services from the
server or when the server sends Web Service response
messages to the clients.

Figure 2- HTML/WSDL Content Converter

Operation

In the standard Web Services implementation this is
supported by Tomcat and AXIS. We developed a SOAP
message processing system, called SOAProc, because
typical architecture causes inefficiency by spawning new
process and adding additional communication port. The
SOAProc directly processes the SOAP request and
response messages without using Servlet engine. Figure 3
illustrates our Web Services system implementation
architecture, in which the SOAProc and the WSDL
builder are used. The most significant difference between
the standard system (see Figure 1) and our
implementation (see Figure 3) is that our system does not
include Tomcat. Instead of using Tomcat’s WSDL and
SOAP supporting function, WSDL files are directly
generated by the WSDL builder and SOAP messages are
processed by the SOAProc system.

Figure 3 – Mobile Web Service using the SOAProc

and the WSDL builder

4.1 SOAP Message Structure

Figure 4 illustrates an example of a SOAP message.
The Header element is intentionally omitted in this
example. <ns1: IntranetLogin …> indicates IntranetLogin
method that will be called. The tags between

Mobile
Devices

Protocol
Detector

Selector

Translator

 Content
Web

Server

<ns1:IntranetLogin…> tag are parameters of method
IntranetLogin, such as <userid> … </userid>, <pass> …
</pass>, and <sessionidtag> … </sessionidtag>.

Figure 4 - SOAP Message Example

4.2 SOAP Request Message Analysis
The algorithm that is used to analyses the method and

its parameters of SOAP request messages is as follows:
Step1: Gets the SOAP messages
The system generates a FileInputStream of

RequestSoapMessage.xml (fis).

Then the system gets the SOAP message from the

above FileInputStream.

Step2: Gets the SOAP Body
The system extracts the SOAP Body from the SOAP

message.

Step3: Analysing SOAP Body
 The system finds IntranetLogin part of

<ns:IntranetLogin …> from the Body of the SOAP
message.

The system creates array list of items between

<ns:IntranetLogin…></ ns:IntranetLogin> in the Body of
the SOAP message.

The system iteratively analyses the item list to get

MessageElement like <userid> … </userid>, <pass> …
</pass>, and <sessionidtag> … </sessionidtag>. In each
iteration, the item’s name and value are obtained by
me.getName() and me.getValue()method. For example, if
the system uses example in Figure 6, <userid … >test
</userid> is in the first item of item list and ‘userid’ and
‘test’ are name and value, which can be get by using
iterative analysis. The system can generate response
message to the clients by using this result.
4.3 SOAP Response Message Generation

Our system analyses the client SOAP request message
and sends the analyzing result to the Web server. When
the Web server system generates a HTTP response
message, our system generates a SOAP response message
by using it. In this part, we describe a response generation
algorithm, in which we assume the response result is a
string type. The response results can be sent by a single or
binary array. The result values and method namespace
value are assumed as follows.

The SOAP response message is generated as follows:
Step 1: Generate SOAP Basic Element
Our system generates the new SOAP response

message by creating a new Envelope element and Body
element.

The SOAP message that is created until now is as

follows:

Step 2: Add Content to SOAP Message
The SOAP contents are created by adding the above

results values.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv =
“http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body>

<ns1:IntranetLogin soapenv:encodingStyle
=http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="urn:wireserver">

<useridxsi:type="xsd:string">
test

</userid>
<pass xsi:type = "xsd:string">

pass
</pass>
<sessionidtag xsi:type="xsd:string">

sessionidtag
</sessionidtag>

</ns1:IntranetLogin >
</soapenv:Body>
</soapenv:Envelope>

RequestSoapMassage.xml

SOAPBodyElement sbe = env.getFirstBody();

FileInputStream fis = new
FileInputStream("RequestSoapMassage.xml")
SOAPEnvelope env = new SOAPEnvelope(fis);

SOAPEnvelope env = new SOAPEnvelope();
env.getBody(); //SOAPBody
SOAPBodyElement body = new SOAPBodyElement();

<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/enve
lope/
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body />
</soapenv:Envelope>

String str = "test1Respons";
String strElement = "test1Return";
String elementValue = "aaa";
String nameSpaceURI = "urn:stringtest";

for(int i = 0 ; i < al.size() ; i++){
MessageElement me = MessageElement)(al.get(i));
System.out.println((i+1)+" th " +
me.getName()+"‘s value is " + me.getValue());

}

ArrayList al = sbe.getChildren();

sbe.getName();

After adding the contents, the SOAP response message

is as follows:

Step 3: Error Handling
If there are any errors in the Web server processing,

the following code creates error messages.

Step 4: Add SOAP Body Element
Lastly, the following code adds the SOAP Body

element when there is no error. SOAP response
generation is completed by doing this.

Figure 5 illustrates a complete SOAP response

message that is generated by our system without Tomcat.

Figure 5 - SOAP Response Message

5. Experiment

5.1 Method

The experiment is focused on the performance
evaluation of our mobile Web service system. Two sets of
systems are prepared for our experiment. The first system
is implemented with standard Web Services architecture
as explained in Section 2. This implementation requires
Tomcat Servlet container with AXIS. The second

implementation is based on our approach. Where there is
no Servelet container with the SOAP message processing
performed by the SOAProc system and WSDL created by
the WSDL builder. We conducted a simulated
performance comparison experiment. Figure 6 illustrates
the experiment process. If a client requests Web services
by submitting a SOAP request, the experiment system
analyses the SOAP message and sends a HTTP request to
the content Web servers. If the experiment system
receives a HTTP response message form the Web server,
it generates WSDL and sends a SOAP response message
to the clients’ mobile device.

Figure 6 – Experiment System Procedure

SOAP requests are simulated by the mobile client

simulation program, which connects to the experiment
system and sends several SOAP request messages. There
are time intervals, from 1 to 10 seconds between SOAP
requests. If the connection is closed, the simulation
program continually tries to connect to the experiment
system. We assumed that there were 200 users at the same
time. SOAP requests were created by four client programs
and each program generated 50 threads at the same time.
We chose two public Web sites [www.daum.net
(dictionary) and www.yahoo.co.kr (stock)], which role as
the content Web servers in our experiment. We assumed
two kinds of specific information - dictionary and stock -
are required by the user from these Web servers. Each
service’s timeout is 30 seconds.

The following results were collected to compare two
experiment systems:

• Test time: how many seconds were consumed for
the test.

• Number of Requests: how many requests were
generated within test time.

• Connection Timeout: the connection numbers that
were not connected within the request timeout.

• Connection Refuse: the request numbers that
could not be connected because the server was
busy.

• Connection Handshake Error: the number of
session configuration failures after connection

• Connection Trial Time: How many times the
client could not connect to the server.

env.addBodyElement(rpcElement);

SOAPFault soapFault = env.getBody().addFault();
soapFault.setFaultCode("code error\n");
soapFault.setFaultActor("action error\n");
soapFault.setFaultString("string error\n");

<ns1:test1Respons
soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/"
xmlns:ns1="urn:stringtest">
<test1Return
si:type="xsd:string">aaa</test1Return>
</ns1:test1Respons>
/

RPCParam rpcParam = new RPCParam(strElement,
elementValue) ;
RPCHeaderParam rpcHeaderParam = new
RPCHeaderParam(rpcParam);
RPCElement rpcElement = new RPCElement(str);
rpcElement.addParam(rpcParam);
rpcElement.setEncodingStyle("http://schemas.xmlsoa
p.org/soap/encoding/");
 rpcElement.setNamespaceURI(nameSpaceURI);
</soapenv:Envelope>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/env
elope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body>

<ns1:test1Respons
soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:ns1="urn:stringtest">

<test1Returnxsi:type="xsd:string">
aaa

</test1Return>
</ns1:test1Respons>

</soapenv:Body>
</soapenv:Envelope>

• Request Timeout: how many times the timeout
was exceeded.

5.2 Results

Table 1 summarizes the experiment as results, which
illustrate an enhanced performance in all categories.
Though the test time of our system is shorter than that of
the standard system, the total number of requests is
greater than that of standard system and the timeout
number is less than that of the standard system. For
example, whist the average request per second of our
system is 17.94, that of standard system is 9.64. There are
many connection errors in the standard system. Only
some portion of 200 requests is successfully connected to
the server while the others get a “refused” message from
the server. However, those kinds of connection failures do
not happen in our system.

Table 1 – Experiment Results
 SOAProc

System
Standard
System

Test time 29,400 46,200
Total Request 524,573 445,422
Connection Timeout 0 435
Connection Refused 0 18,960
Connection Handshake Error 0 513
Connection Trials 243 22,534
Request Timeout 756 119,891

6. Conclusions

Mobile Web services are critical solutions in the
Internet service integration architecture. In this research
we proposed a new Web Service architecture by
implementing two significant systems. Firstly, the
HTML/WSDL converter can support reusing current
HTML based contents. This is essential for saving
developing or maintenance costs and serving seamless
Internet services both wired and wireless. Secondly, we
proposed a new SOAP message processing system to
diminish SOAP latency problems by eliminating the
Tomcat Servelet container in the Web Services
implementation. The SOAP request and response
messages are directly processed by the SOAProc system.
We can implement an alternative mobile Web Services
system by using these two systems without violating
standard Web Services protocols. Our system can process
more service request about doubly efficient than that of
typical Web service implantation with very small
connection errors.

7. References
1. Siau, K., E.P. Lim, and Z. Shen, Mobile commerce:

promises, challenges, and research agenda. Journal of
Database Management, 2001. vol.12, no.3: p. 4-13.

2. Kim, H., et al. An Empirical Study of the Use Contexts
and Usability Problems in Mobile Internet. in 35th

Annual Hawaii International Conference on System
Sciences (HICSS'02). 2002.

3. Kaasinen, E., et al., Two approaches to bringing
Internet services to WAP devices. Computer
Networks, 2000. 33(1-6): p. 231-246.

4. Kurbel, K. and A. Dabkowski. Dynamic WAP content
Generation with the use of Java Server Pages. in Web
Databases/Java and Databases: Persistence Options
(Web&DB/JaDa). 2002. Erfurt, Germany.

5. Metter, M. and R. Colomb. WAP Enabling Existing
HTML Applications. in First Australasian User
Interface Conference. 2000.

6. Saha, S., M. Jamtgaard, and J. Villasenor, Bringing
the wireless Internet to mobile devices. Computer,
2001. vol.34, no.6: p. 54-58.

7. Pashtan, A., S. Kollipara, and M. Pearce, Adapting
content for wireless Web services. IEEE Internet
Computing, 2003. 7(5): p. 79-85.

8. Farrell, J.A. and H. Kreger, Web services management
approaches. IBM Systems Journal, 2002. vol.41, no.2:
p. 212-227.

9. Seshasayee, B., K. Schwan, and P. Widener, SOAP-
binQ: high-performance SOAP with continuous
quality management. Proceedings. The 2nd IEEE
International Conference on Distributed Computing
Systems, 2004: p. 158-165.

10. Kohlhoff, C. and R. Steele, Evaluating SOAP for high
performance applications in capital markets.
Computer Systems Science and Engineering, 2004.
19(4): p. 241-251.

11. Chiu, K., M. Govindaraju, and R. Bramley, SOAP for
High Performance Computing, in 11 th IEEE
International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC'02).
2002, Indiana University. p. 246.

12. Chiu, K., M. Govindaraju, and R. Bramley.
Investigating the Limits of SOAP Performance for
Scientific Computing. in 11th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-11 '02). 2002.

13. Davis, D. and M. Parashar. Latency Performance of
SOAP Implementations. in 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid. 2002.

14. Dugas, R., WWW Unplugged: An HTML to WML
transcoding proxy. 2001.

15. Magnusson, M. and D. Stenmark. Mobile Access to
the Intranet: Web Content Management for PDAs. in
Americas Conference on Information Systems 2003.
2003.

16. W3C, Web Services Architecture Requirements.
Web Services Architecture Requirements, 2002.

