Parental effects in two species of viviparous lizards: *Niveoscincus microlepidotus* and *N. ocellatus*

by

Natalia Atkins BSc. (Hons)

Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy, School of Zoology, University of Tasmania
(June, 2007)
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, and to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis.

Signed: __________________ (Natalia Atkins)
Date: __________________

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Signed: __________________ (Natalia Atkins)
Date: __________________
This thesis contains the following published papers:

Abstract

This thesis focuses on maternal contributions to offspring fitness in viviparous lizards. Although parental effects may include both pre- and postpartum components, the majority of squamate reptile species exhibit no parental care: parental effects on offspring fitness can, therefore, be imposed only until the time of oviposition or parturition.

In viviparous reptiles, offspring are retained in utero for the entire duration of embryogenesis, but in most species the majority of embryonic nutrition is supplied through the yolk with a small contribution by a simple placenta. In some reptilian species, viviparity has evolved further, resulting in a diverse range of placental arrangements and a complete spectrum of embryonic nutritional modes being displayed across a wide range of taxa. It has been suggested that facultative placentotrophy (the ability to supplement an adequate yolk supply) allows the introduction of flexibility into the timing of parturition by providing embryos with additional energy stores to utilise if parturition is delayed. My study species were two closely related viviparous lizards found in Tasmania, Australia. Previously, embryonic nutrition has been shown to be predominantly placentotrophic in Niveoscincus ocellatus; I have now determined that embryonic nutrition is predominantly lecithotrophic in N. microlepidotus, and that females may utilise facultative placentotrophy only in some years.

My thesis investigated the major hypothesis that deferral of parturition after completion of embryonic development is a key strategy employed by females of viviparous lizards to maximise offspring fitness. The three interlinked papers on this theme that I have included in my thesis support my hypothesis. In N. ocellatus, deferring parturition in response to cold conditions had no effect on offspring
phenotype at birth, dispersal distance or survivorship of offspring after release; however, there was a significant negative effect on offspring growth measured after release, which has profound implications for age and size at maturity. I found that females from a high elevation population were less able to defer birth under “long” periods (three weeks) of cold conditions than females of a low elevation population. I attribute the reduced ability of females from the high elevation population to defer parturition to selection for preventing births too close to winter.

However, in the biennially reproducing *N. microlepidotus*, my results have identified that the naturally protracted deferral of parturition from autumn until spring represents a trade-off between offspring quality and offspring size. Finer scale variation in the timing of parturition also influences neonatal characteristics: I have shown that there is an effect of date of birth on several key offspring characteristics at birth in *N. microlepidotus*. Experimental manipulations of the maternal environment demonstrated that females are able to defer birth for an additional four weeks at the end of gestation, but with no significant effect on offspring characteristics.

How is the timing of parturition determined if fully developed embryos may be held *in utero* for significant periods of time? I discovered that in *N. microlepidotus* the uteri are equally responsive to hormonal stimulation (arginine vasotocin (AVT) and prostaglandin (PGF$_{2\alpha}$)) in autumn and spring. In both *N. microlepidotus* and *N. ocellatus*, females are more responsive to AVT than to PGF$_{2\alpha}$, and the response to AVT is decreased, but not prevented, by β-adrenergic stimulation. In *N. ocellatus*, temperature modulates the response to AVT *in vivo*, with the time to parturition increasing as temperature decreases. In these viviparous
species, then, the endocrine cascade leading to parturition is modulated by the β-adrenergic system.

The final component of the thesis investigated male reproductive success in a population of *N. ocellatus*. I determined the paternity of 65% of the offspring: the results demonstrate that the species has a high level (93%) of multiple paternity within litters, with females having access to many males. While female size is correlated with litter size, I was unable to identify any factors that determine male reproductive success. In addition, the size of the father within a litter had no effect on offspring characteristics at birth, and no measured parental characteristics were determinants of offspring survival.

This thesis has demonstrated that females of viviparous lizards exhibit a suite of characteristics that enable them to manipulate offspring characteristics through the control of the timing of parturition. This provides new evidence to support Shine’s “Maternal Manipulation Hypothesis”.

Acknowledgements

I would like to thank the following:

• Sue Jones – the best supervisor a person could wish for;
• Roy Swain;
• Erik Wapstra – for all things lizard;
• Jemina Stuart-Smith - without whom I couldn’t of got through the PhD and those conferences without;
• Ashley Edwards - for amongst other things, her excellent baby squeezing abilities;
• Matt Cecil - the best field assistant a person could ask for;
• Jane Girling;
• All those lizard collectors and people that helped in the field: Sue, Roy, Erik, Ashley, Jemina, Matt, Angela Maher, the Jones family, Erica Williams, Michelle Thums, Allison Miller, Rick Stuart-Smith, Karina, Jo McEvoy, Geoff While, Marlies Jahn and John McCormack;
• The Herp group past and present, particularly Geoff for help with the genetics component and Marlies;
• John and my sister Yvette – help with endless feeding and checking for babies;
• Wayne Kelly, Randy Rose, Kit Williams for assistance in the contractility experiment and the Physiology department for loan of equipment;
• Adam Smolenski, Natasha Wiggins and Ashley for their work on the paternity analysis;
• Craig Johnson and David Ratkowsky for statistical advice;
Acknowledgements

• Support staff at Zoology: Richard Holmes, Wayne Kelly, Barry Rumbold, Kate Hamilton, Sherrin Bowden, Adam Stephens and Kit Williams;

• Funding support from the Australian Research Council;

• My fellow table tennis supporters: Jemina, Rick, Anthony, Natasha and Adam for much needed procrastination during the writing up of my thesis, and my gym buddies Jemina, Heidi Auman, Natasha, Fiona Spruzen, and Chloe Cadby;

• Past and present office and lab buddies, particularly Bonnie Lauck, Heather Hesterman and Lou Cromer;

• the cakes at cake day for getting me through the week;

• my friends Bec Lietzau and Rhonda Evans;

• my family, the McCormacks, and Clio and Abby;

• the staff at K&D for their support;

• and lastly, John McCormack senior, who sadly missed out on seeing “Natasha the lizard lady” finish her thesis and graduate.
Table of Contents

Thesis Abstract
iv
Acknowledgments
vi
Table of Contents
Chapter 1: General Introduction
1

Part 1. Deferral of parturition as a strategy for optimising offspring fitness in viviparous lizards

Chapter 2: Are babies better in autumn or spring? The consequences of extending gestation in a biennially reproducing viviparous lizard.
23

Chapter 3: Does date of birth or a capacity for facultative placentotrophy influence offspring quality in a viviparous skink, *Niveoscincus microlepidotus*?
46

Chapter 4: Late stage deferral of parturition in the viviparous lizard *Niveoscincus ocellatus* (Gray, 1845): implications for offspring quality and survival.
68

Part 2. Endocrine mechanisms controlling parturition and their modulation by environmental influences or beta-adrenergic stimulation

Chapter 5: Timing of parturition in two species of viviparous lizard: influences of \(\beta \)-adrenergic stimulation and temperature upon uterine responses to arginine vasotocin (AVT).
103
Table of Contents

Part 3. Genetic control of offspring fitness – paternal influence

Chapter 6a: Home range, multiple paternity and reproductive success in a viviparous squamate, *Niveoscincus ocellatus* (Gray 1845).

Chapter 6b: Paternal effects on offspring quality and survival in *Niveoscincus ocellatus*.

Chapter 7: General Discussion

Appendix 1: Successful treatment of a mite infestation in gravid spotted snow skinks (*Niveoscincus ocellatus*).

Appendix 2: Effect of temperature on induction of parturition by exogenous AVT in *Niveoscincus ocellatus*: a preliminary investigation.