Mean Flow, Eddy Variability and Energetics of the Subantarctic Front South of Australia

by

Helen E. Phillips
B. Sc. (Hons), Grad. Dip. Comp. Sci.

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Tasmania
September, 2000
Declaration

This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution. To the best of my knowledge this thesis contains no material previously published or written by another person except where due acknowledgment is made in the text of the thesis.

............................
Helen E. Phillips

Authority of Access

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

............................
Helen E. Phillips
Abstract

This thesis describes the variability and mean flow of the Subantarctic Front (SAF) south of Australia using time series measurements of velocity and temperature from 1993 to 1995, and six hydrographic transects along WOCE line SR3 from Tasmania to Antarctica over the period 1991 to 1996. The SAF is the strongest jet of the Antarctic Circumpolar Current (ACC) south of Australia. The time series of velocity and temperature are only the third such dataset collected in the ACC and provide insight into the dynamics of this massive current and into the heat and momentum balances of the Southern Ocean.

The SAF was found to be an energetic, meandering jet with vertically coherent fluctuations. These fluctuations varied on a timescale of 20 days, and had a typical amplitude of 30 cm s\(^{-1}\) at 1150 dbar. The analysis used a coordinate frame that rotated daily to be in alignment with the direction of flow. This allowed the mesoscale variability of the SAF to be isolated from variability due to meandering of the front and proved very successful for examining eddy fluxes. Vertically averaged cross-stream eddy heat flux was 11.3 kW m\(^{-2}\) poleward and was significantly different from zero at the 95% confidence level for fluctuations with periods between 2 and 90 days. Zonally integrated, this eddy heat flux (=0.9\times10^{15} \text{ W}) is more than large enough to balance the heat lost south of the Polar Front and is as large as cross-SAF fluxes found in Drake Passage. Cross-stream eddy momentum fluxes were small and not significantly different from zero but were tending to decelerate the mean flow. A relationship between vertical motion and meander phase identified in the Gulf Stream was found to hold for the SAF. Eddy kinetic energy levels were similar to those in Drake Passage and southeast of New Zealand. Eddy potential energy was up to an order of magnitude larger than at the other ACC sites, most likely because meandering of the front is more common south of Australia. Baroclinic conversion was found to be the dominant mechanism by which eddies grow south of Australia. The typical time for the growth of an eddy is estimated to be 30 days, approximately half that in Drake Passage. This is consistent with observations from satellite altimetry which indicate that eddy energy is growing rapidly downstream of the Australian measurement site, while the eddy field in Drake Passage is mature.

Mean cross-stream profiles of absolute and baroclinic velocity in the SAF at five current meter levels have been obtained from two streamwise profiling techniques using specific volume anomaly at 780 dbar as the cross-stream coordinate. One of the techniques, using hydrographic data to estimate the baroclinic velocity profile, is presented for the first time. The mean SAF
Abstract

velocity profile is composed of one central peak, reaching 52 and 34 cm s$^{-1}$ at 420 dbar, absolute and baroclinic respectively, and several smaller peaks. The SAF flow is coherent at all levels, reaches the sea floor, and is at least 220 km wide. The cross-stream structure of baroclinic and absolute transport of the SAF has been characterized for the first time. The integrated mean transport is at least $116\pm10 \times 10^6$ m3 s$^{-1}$, of which approximately 14% is barotropic. The linear conditions for baroclinic and barotropic instability are satisfied at the array, consistent with the eddy growth rates calculated.
Acknowledgments

Foremost, I would like to say thankyou to my three supervisors.

To Steve Rintoul, on whom the lion’s share of supervision fell, for providing excellent supervision – a subtle blend of endless encouragement, generosity of time and knowledge, reading countless thesis revisions, and allowing me the freedom to find my own way.

To Nathan Bindoff, for encouragement, for valuable discussions on the definition of the cross-stream coordinate and subsequent error analysis in Chapter 4, for detailed comments on the final draft of the thesis, and for being the buffer between me and the Administration.

To Richard Coleman, for encouragement, for helpful comments in reviewing my work, and for a particularly careful reading of the final draft of the thesis.

I would also like to thank John Church for his detailed reviews of two journal articles arising from the thesis.

The current meter and hydrographic data used in the thesis would not have been collected without the contribution of the officers and crew of the RSV Aurora Australis. The successful design, deployment and recovery of the current meter moorings is thanks to Fred Boland, Kevin Miller, Danny McLaughlin and Mark Rosenberg. This work was supported in part by Environment Australia through the National Greenhouse Research Program, and by the Australian National Antarctic Research Expeditions (ANARE).

During my PhD candidature I was supported by an Australian Postgraduate Award, an Antarctic Cooperative Research Centre “Top-up” Award, and a CSIRO Postgraduate Award.

Finally, thankyou to my family. To Leigh and Isabel, for making home such a pleasure that I almost didn’t want life to move on. And to Joseph, for kicking me on at the finish.
CONTENTS

Declaration .. ii
Authority of Access ii

CHAPTER

Abstract .. iii
Acknowledgments ... v
Contents .. vi
List of Tables ... ix
List of Figures ... xi

1 INTRODUCTION ... 1

1.1 The Antarctic Circumpolar Current 1
1.2 Importance of the ACC 4
1.3 Earlier ACC Measurements 9
1.4 New Measurements, New Techniques 12
1.5 Aims of the Thesis 13
1.6 Overview of the Thesis 14

2 OBSERVATIONS .. 15

2.1 The AUSSAF Current Meter Array 15

2.1.1 Location .. 15
2.1.2 Array Design 15

2.2 Current Meter Data Processing 22

2.2.1 Instrument Problems 22
2.2.2 Removal of Tides 32

2.2.3 Correction for Mooring Motion 32

2.3 Supplementary Data 38

3 EDDY VARIABILITY IN THE SUBANTARCTIC FRONT ... 42

3.1 Background .. 42
3.2 Chapter Outline 43
3.3 Temperature and Velocity Structure 43
Contents

3.3.1 Mean Temperature and Velocity 43
3.3.2 Variability of Temperature 44
3.3.3 Variability of Horizontal Velocity 50
3.3.4 Vertical Velocity 57
3.3.5 The link between \(T, \hat{u}, \hat{v}, \text{ and } w \) 60
3.3.6 Comparison of Temperature and Velocity at other ACC sites 65
3.4 Eddy Fluxes across the Subantarctic Front 67
3.4.1 Frequency Bands and Coordinate Frames 67
3.4.2 Heat Flux ... 71
3.4.3 Momentum Flux 76
3.4.4 Zonal Momentum Balance or Meridional Mass Balance 78
3.5 Eddy Energy Distribution 82
3.5.1 Eddy Kinetic Energy 82
3.5.2 Eddy Potential Energy 83
3.5.3 Energy Conversion 85
3.5.4 Growth of Eddies 86
3.6 Summary and Conclusions 88
4 A MEAN SYNOPTIC VIEW OF THE SUBANTARCTIC FRONT 91
4.1 Background .. 91
4.2 Chapter Outline 92
4.3 Mean Absolute Velocity from Current Meter Data 93
4.3.1 Defining the Cross-stream Coordinate 93
4.3.2 Mean Absolute Velocity Profile 97
4.4 Mean Baroclinic Velocity from CTD Data 101
4.4.1 The Method 101
4.4.2 Mean Baroclinic Velocity Profile 103
4.5 Comparison of Current Meter and CTD Views 106
4.6 Transport Structure 110
4.7 Linear Instability Analysis 117
Contents

4.8 Discussion .. 119
4.8.1 Velocity ... 119
4.8.2 Transport .. 121
4.8.3 Stability ... 121
4.9 Summary and Conclusions 122

5 CONCLUDING DISCUSSION 124
5.1 Highlights ... 124
5.2 Coherent Threads 124
5.2.1 Low-frequency Motion 125
5.2.2 Eddy Generation at AUSSAF 126
5.2.3 Zonal Coherence of the ACC 127
5.3 A Final Word .. 128

6 FUTURE WORK ... 129
6.1 A Consistent Presentation of ACC Current Meter Data ... 129
6.2 A Cross-Stream Coordinate From Altimetry 130

APPENDIX
A EMPIRICAL δ-T RELATIONSHIPS 131
B TIME SERIES PLOTS 133
C CALCULATION OF VERTICAL VELOCITY 138
D SPECTRA PLOTS 142
E COMPARISON WITH HALL AND BRYDEN’S METHOD ... 149
REFERENCES .. 154
TABLES

TABLE

2.1 Position, nominal depth and dates of operation of each current meter. Where dates of operation are different for velocity and temperature from the same instrument, both are tabled. Also shown is the pressure level of the data after mooring motion correction (or mean pressure for the two deepest levels). Some gaps in the data are filled by the mooring motion correction scheme; the percentage of each record thus filled is indicated.

2.2 Order of polynomial used to fit the pressure drift envelope for each record or part thereof. Italics indicate that “part 2” records were not reliable.

2.3 Days of useful pressure records at each instrument that recorded pressure.

2.4 Dates of operation of current meters after small gaps have been filled by mooring motion correction. Dates of occupation of the WOCE SR3 hydrographic section.

3.1 Mean and variance of temperature and velocity for the full record length of each instrument. Velocity statistics are presented in both geographic and shear coordinates (see text for definitions).

3.2 Mean and rms vertical velocity (mm s\(^{-1}\)) between adjacent instruments. Pressure at instrument and mid-way between instrument pairs is shown. For West, the common record length of 132 days is used.

3.3 Comparison of characteristic timescale and amplitude of fluctuations, vertical shear and vertical temperature gradient at AUSSAF, southeast of New Zealand, and in northern and central Drake Passage.

3.4 Cross-stream eddy heat flux, \(\rho_o C_p v' T'\) in 2 frequency bands and 3 coordinate frames at the South mooring. Significant correlation at the 90% confidence level is indicated by † and at the 95% confidence level by ‡.
3.5 Best estimate of eddy heat and momentum flux profiles at the AUSSAF array (shear coordinate, bandpassed data)........ 72

3.6 Interfacial form stress, $\rho_o f \frac{\delta T}{\delta z}$ at the South mooring for 2 frequency bands in shear coordinates. Positive stress indicates a downward flux of eastward momentum. Also shown is the cross-stream eddy heat flux (statistically significant at the 95% confidence level) and the mean vertical temperature gradient estimated from CTD data............... 80

3.7 Profiles of eddy kinetic energy in 2 coordinate frames, eddy potential energy, conversion of available potential energy in shear coordinates and timescale for eddy growth...................... 82

4.1 Total volume transport for the SAF south of Australia in Sverdrups ($1 \text{SV} = 1 \times 10^6 \text{ m}^3 \text{ s}^{-1}$)... 114
FIGURES

FIGURE

1.1 Principal bathymetric features of the Southern Ocean with the location of the Subtropical Front shown. Depths less than 3500 m are shaded. Adapted from Orsi et al. (1995).

1.2 Circumpolar distributions of the SAF, PF and southern ACC front; the STF and southern boundary of the ACC are also shown as dashed lines. The numbered transects refer to vertical sections on which transports and property distributions were examined. From Orsi et al. (1995).

1.3 Density parameter σ_0 above 1 km, σ_2 between 1 and 3 km and σ_4 below 3 km along Melville section II across Drake Passage. From Nowlin et al. (1977). Locations of the SAF, PF and southern ACC front according to Orsi et al. (1995) are marked.

1.4 Schematic view of the meridional overturning circulation (Steve Rintoul, personal communication).

1.5 Vertical property sections along WOCE line SR3 during September 1996: (a) potential temperature ($^°$C), (b) salinity, (c) oxygen (μmol kg$^{-1}$), and (d) neutral density (kg m$^{-3}$). SB = southern boundary of the ACC, ASF = Antarctic Slope Front. See text for abbreviations of other front and water mass names. From Rintoul et al. (2000a).

2.1 Location of the AUSSAF current meter array (blue circles) and the WOCE SR3 hydrographic section (pink crosses), overlaid on shading of Smith and Sandwell (1994) bathymetry (metres) and contours of 0-2000 dbar dynamic height (dyn. m.) from Olbers et al. (1992). Box is expanded in Fig. 2.3.
2.2 Velocity variance ellipses for the region southeast of Australia and New Zealand from the time series of velocity components at Geosat crossover points. Only variance ellipses above the estimated background noise level are shown. Background noise ellipses are constant at each latitude, and are shown on the right-hand side of the plot. Depths less than 3000 m are shaded. The scale ellipse has a semimajor axis of $2000 \text{ cm}^2 \text{s}^{-2}$, a semiminor axis of $500 \text{ cm}^2 \text{s}^{-2}$, and is rotated 90° from north. From Morrow et al. (1994) .. 17

2.3 Expanded view of the mooring array, bathymetry and dynamic topography shown in Fig. 2.1, with mean velocity vectors from each current meter. Strongest velocities correspond to shallowest instruments: 420 dbar on West, Central and South, 1150 dbar on North. Mean velocities are full record length except at West where the common length of 132 days is used so that the mean rotation of horizontal velocity with depth is not distorted by averaging over different time periods. Mean velocity at West 1150 dbar is also shown for the full record length (dashed vector) for comparison with other moorings. 19

2.4 Position of current meters and floats on each mooring. Water depths are shown at the bottom of each profile. Where 19” floats are indicated, these should be marked as 17”........... 20

2.5 West 300 m. Top: Pressure (dbar), horizontal lines mark times when speed $< 30 \text{ cm s}^{-1}$, circles mark points on the minimum pressure envelope. Bottom: Speed (cm s$^{-1}$). 23

2.6 West 1000 m. Top: Observed pressure (dbar), with a two-part fit to the envelope of minimum pressure. Bottom: Pressure after the drift has been removed. 25

2.7 Pressure at Central 300 m and 1000 m after the drift has been removed. Eight large-scale pressure changes are marked; these are used to determine the ratio of 300 m to 1000 m pressure changes. 28

2.8 Histogram of the difference between observed and simulated pressure at Central 300 m for R=1.23. 28

2.9 Top: Comparison of observed and simulated pressure at Central 300 m. Bottom: Pressure at Central 300 m, 1000 m and 2000 m after the drift has been removed, including the simulation at 300 m (dotted line). 29
2.10 Top: Direction at West 300 m minus direction at West 1000 m. Middle: Speed at 300 and 1000 m on West. Bottom: Temperature at 300 m and 1000 m on West. 31

2.11 The canonical temperature profile. Also shown is the scatter of (T,P) pairs from the top 4 instruments on all moorings, offset in pressure to fit the canonical profile. 35

2.12 Pressure (dbar) at 1000 m as a function of pressure at 300 m. Data points from 3 moorings; linear relationship defined in the text; and constant pressure offset (=759 dbar). 37

2.13 Top 3 panels: Simulation of 600 m temperature and velocity from data at 300 m and 1000 m, using the standard MMC method. Bottom 3 panels: As for the top panels but with the svan modification to the velocity correction. 39

3.1 (a) Time series of temperature from the South mooring, (b) time series of 420 dbar temperature from the Central mooring (fine line) and the South mooring (heavy line). Dates of CTD transect of Fig. 3.2 are marked by a line at 9.5°C, near day 300. 46

3.2 CTD temperature (°C) section along part of WOCE SR3 during January 1994. Working current meters on the main line (solid circles) and CTD stations (dotted lines) are shown. The top 500 m is expanded. 48

3.3 First EOF for the vertical structure of temperature, along-stream velocity (us), cross-stream velocity (vs) and vertical velocity for the West (dots), South (squares) and Central (circles) moorings. For West, the common record length (132 days) is used. 49

3.4 Time series of temperature at 1150 dbar for all moorings. 51

3.5 Time series of velocity components in geographic coordinates for the South mooring: (a) “eastward”, directed toward 104°T and (b) “northward”, directed toward 14°T. 54

3.6 Time series of velocity components in shear coordinates for the South mooring: (a) along-stream in the direction of 420–2240 dbar daily shear and (b) cross-stream, 90° left of along-stream. 55

3.7 Vertical velocity between adjacent instruments on the South mooring. Pressure shown is halfway between instrument pairs. 59
3.8 Time series from South showing the link between rotation of current vectors with depth, cross-stream and vertical velocities: (a) temperature, (b) along-stream velocity and (c) cross-stream velocity, all at 420 dbar, (d) vertical velocity at 600 dbar and (e) current direction at both 420 and 780 dbar. Downwelling (upwelling) and cold (warm) advection occur when the current is backing (veering). The 4 days highlighted relate to Fig. 3.9.

3.9 Ten-day average current vectors at 1150 dbar on 4 days, and corresponding sea surface height. Sea surface height anomalies from the TOPEX/POSEIDON, ERS-1 and ERS-2 satellite altimeters, merged and mapped onto a 0.25° grid (the CLS “MSLA” data set (Le Traon et al. 1998)), have been added to the 0-2500 dbar dynamic height from the Olbers et al. (1992) climatology.

3.10 Auto-spectra of eastward (toward 104°T) and northward velocity and temperature at 2240 dbar on the South mooring.

3.11 Cospectra of cross-stream velocity and temperature, and northward velocity and temperature, at 420 dbar on the South mooring. The dotted line marks a period of 90 days.

3.12 Time series of cross-stream eddy heat flux $\rho_o C_p \hat{v}'T'$ (shear coordinates) for the top 3 instruments on the South mooring. The eddy band (40 hours–90 days) and low-frequency band (>90 days) are superimposed. Times when the array is on the northern/southern side of the front are marked above/below the curves.

3.13 Profiles of cross-stream eddy heat flux $\rho_o C_p \hat{v}'T'$. (a) 4 AUSSAF moorings, shear coordinate, bandpassed data. Symbols over the data point indicate statistical significance: triangle = 90%, circle = 95%. (b) representative profiles from all available SAF sites: best estimate from AUSSAF moorings – array-mean of shear-coordinate, bandpassed fluxes; array-mean of AUSSAF shear-coordinate, all-frequency fluxes; southeast of New Zealand (Bryden and Heath 1985); and 2 northern Drake Passage estimates (Nowlin et al. 1985).

3.14 As in Fig. 3.12 but for cross-stream eddy momentum flux $\hat{u}'\hat{v}'$.

3.15 Profiles of cross-stream eddy momentum flux, $\overline{u'v'}$. (a) 4 AUS-SAF moorings, shear coordinate, bandpassed data. Time averaging is done only for periods when array is south of SAF (see text for definition). Symbols over the data point indicate statistical significance: triangle = 90%, circle = 95%. (b) as for (a) but north of SAF. (c) as for Fig. 3.13b.

3.16 Vertical profiles of (a) eddy kinetic energy $\frac{1}{2}(u'^2 + v'^2)$ and (b) eddy potential energy $\frac{1}{2} ga \overline{T'^2}/\theta_z$ for geographic coordinate, all-frequency AUSSAF data compared with profiles from other sites in the ACC: southeast of New Zealand and Drake Passage (all solid lines); and from western boundary current systems: Agulhas, Gulf Stream and Kuroshio Extension (all dashed lines). Kinetic and potential energy for southeast of New Zealand and kinetic energy for central Drake Passage taken from Bryden and Heath (1985); potential energy for central Drake Passage is from Bryden (1979); kinetic energy for the remaining sites is from Schmitz (1996).

4.1 Time series of temperature at 780 dbar (heavy line) and along-stream velocity at 780 dbar in units of 10 cm s$^{-1}$ (fine line) on the West, Central and South moorings. Ten crossing events are marked.

4.2 Scatter of the inverse of the cross-stream gradient of specific volume anomaly versus specific volume anomaly at 780 dbar. The solid line is the median in each svan bin; the limits of the shaded region are the 16th and 84th percentiles in each svan bin. Alternative abscissa: temperature at 780 dbar.

4.3 Distribution of $(\partial\delta/\partial y)^{-1}$ with 16th, 50th (solid line) and 84th percentiles indicated. Inset shows that for a Gaussian distribution, ±1 standard deviation encloses 68% of the total area under the curve.

4.4 Cross-stream distance y as a function of specific volume anomaly at 780 dbar. Shaded region is an estimate of the error in y corresponding to the 16th and 84th percentiles of $(\partial\delta/\partial y)^{-1}$. Alternative abscissa: temperature at 780 dbar.

4.5 Cross-stream profile of along-stream absolute (baroclinic+barotropic) velocity. Standard error is calculated for 10 (5) degrees of freedom in unshaded (shaded) bins.
4.6 Dynamic height calculated from the 6 CTD transects relative to 3320 dbar at each of the current meter levels and 100 dbar, versus specific volume anomaly at 780 dbar. Smoothing cubic spline fits to each curve are also shown. Alternative abscissae: temperature at 780 dbar and cross-stream distance.

4.7 Geostrophic velocity of the sea surface relative to the deepest common level of CTD pairs (thin line), and temperature at 780 dbar (thick line) along six transects of WOCE section SR3 from Tasmania (left) to Antarctica (right). Vertical lines mark positions of North, Central and South current meter moorings.

4.8 Cross-stream profile of baroclinic along-stream velocity calculated using 0-3320 dbar dynamic height along SR3 and the cross-stream coordinate, y(δ780), determined from current meter data. Shading is an error estimate for the 100 dbar velocity.

4.9 SR3 temperature section (°C) for January 1994 and corresponding surface geostrophic velocity referenced to the deepest common level of CTD pairs. Locations of the Subantarctic Front, North Polar Front and a cold core ring are indicated.

4.10 Comparison of different methods of velocity estimation. Solid line is the mean absolute velocity from current meters. Dashed line is the mean baroclinic velocity calculated from dynamic height relative to 3320 dbar as a function of svan and using cross-stream distance determined from the current meter data. Horizontal grid lines are δ780 in m3 kg−1. a) At 420 dbar. Profiles and point estimates of cross-SR3 geostrophic velocity from CTD pairs relative to the deepest common level of the pair for 6 transects (see legend). b) At 100 dbar. Absolute velocity profile (solid line) conservatively extrapolated from 420 to 100 dbar (see text). Scattered points are ADCP velocity at 100.6 m for the latter 3 transects (positive indicates no westward component).

4.11 Sea surface height anomalies from the TOPEX/POSEIDON, ERS-1 and ERS-2 satellite altimeters, merged and mapped onto a 0.25° grid (the CLS “MSLA” data set (Le Traon et al. 1998)), have been added to the 0-2500 dbar dynamic height from the Olbers et al. (1992) climatology. The sea surface height map is concurrent with the July 1995 CTD section along SR3, for which the station-averaged ADCP velocities are shown.
4.12 Structure of volume transport per unit width of the ACC. (a) A is total transport from current meters and B_{cm} is baroclinic transport from current meters, the area between the two is barotropic transport defined as velocity at 2240 dbar times the water depth. C_{ctd} is baroclinic transport estimated from 0/2240 dbar dynamic height. X_{cm} is the transport between 2240 dbar and the sea floor estimated from current meters. (b) As for (a) but D_{cm} and E_{ctd}, analogous to B_{cm} and C_{ctd}, respectively, are relative to 3320 dbar.

4.13 (a) $\frac{\partial u}{\partial y}$ at 420 dbar from smoothed absolute velocity profile. (b) Smoothed absolute velocity profile at current meter levels (thin lines) and locations where condition for barotropic instability is satisfied (thick lines). Mean profiles of vertical velocity shear (c) and squared buoyancy frequency (d) from CTDs in the SAF. (e) Cross-stream gradient of potential vorticity in the SAF.

A.1 Smooth spline fits to δ-T pairs from SR3 CTDs at 5 pressure levels \pm100 dbar.

B.1 West mooring: temperature, along-stream and cross-stream velocity. No data exists at 2240 dbar; the dotted line is an extrapolation (Section 2.2.3).

B.2 South mooring: temperature, along-stream and cross-stream velocity.

B.3 Central mooring: temperature, along-stream and cross-stream velocity.

B.4 North mooring: temperature, along-stream and cross-stream velocity.

C.1 West mooring: vertical velocity.

C.2 South mooring: vertical velocity.

C.3 Central mooring: vertical velocity.

C.4 North mooring: vertical velocity.

D.1 West mooring: frequency \times auto-spectral density of eastward velocity (104°T), northward velocity (14°T) and temperature.

D.2 South mooring: frequency \times auto-spectral density of eastward velocity (104°T), northward velocity (14°T) and temperature.
List of Figures

D.3 Central mooring: frequency × auto-spectral density of eastward velocity (104°T), northward velocity (14°T) and temperature. . 145

D.4 North mooring: frequency × auto-spectral density of eastward velocity (104°T), northward velocity (14°T) and temperature. . 145

D.5 West mooring: frequency × auto-spectral density of along-stream velocity, cross-stream velocity and temperature. 146

D.6 South mooring: frequency × auto-spectral density of along-stream velocity, cross-stream velocity and temperature. 147

D.7 Central mooring: frequency × auto-spectral density of along-stream velocity, cross-stream velocity and temperature. 148

D.8 North mooring: frequency × auto-spectral density of along-stream velocity, cross-stream velocity and temperature. 148

E.1 Scatter of cross-stream gradient of specific volume anomaly versus specific volume anomaly at 780 dbar, with linear least squares fits either side of δ_{780}=1.102\times10^{-6} \text{ m}^3 \text{ kg}^{-1}, corresponding to T_{780}=6\text{°C}. 150

E.2 Cross-stream profile of along-stream absolute velocity from the method of Hall and Bryden (1985). Standard error is calculated for 10 (5) degrees of freedom in unshaded (shaded) bins. . . . 152

E.3 Cross-stream distance calculated using the method of Hall and Bryden (1985) (thin line) compared with cross-stream distance calculated in this paper (thick line). 153