To The Knowledge Frontier and Beyond:
A Hybrid System for Incremental Contextual-Learning and Prudence Analysis

by

Richard Peter Dazeley (BComp Hons)

A Dissertation submitted to the School of Computing in fulfilment of the requirements for the Degree of

Doctor of Philosophy

University of Tasmania
(March, 2006)
Declaration

This thesis contains no material, which has been accepted for the award of any other degree or diploma in any tertiary institution, and that, to my knowledge and belief, this thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis

Signed________________________________

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968

Signed __________________________ Date___________________
Abstract

Increasingly, researchers and developers of knowledge based systems (KBS) have been attempting to incorporate the notion of context. For instance, Repertory Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all integrate either implicit or explicit contextual information. However, these methodologies treat context as a static entity, neglecting many connectionists’ work in learning hidden and dynamic contexts. This thesis argues that the omission of these higher forms of context, which allow connectionist systems to generalise effectively, is one of the fundamental problems in the application and interpretation of symbolic knowledge.

This thesis tackles the problems of KBSs by addressing these contextual inadequacies over a three stage approach: philosophically, methodologically and through the application of prudence analysis. Firstly, it challenges existing notions of knowledge by introducing a new philosophical view referred to as Intermediate Situation Cognition. This new position builds on the existing SC premise, that knowledge and memory is re-constructed at the moment required, by allowing for the inclusion of hidden and dynamic contexts in symbolic reasoning.

This philosophical position has been incorporated into the development of a hybridised methodology, combining Multiple Classification Ripple-Down Rules (MCRDR) with a function-fitting technique. This approach, referred to as Rated MCRDR (RM), retains a symbolic core acting as a contextually static memory, while using a connection based approach to learn a deeper understanding of the knowledge captured. This analysis of the knowledge map is performed dynamically, providing constant online information. Results indicate that the method developed can learn the information that experts have difficulty providing. This supplies the information required to allow for generalisation of the knowledge captured.

In order to show that hidden and dynamic contextual information can improve the robustness of a KBS, RM must reduce brittleness. Britteness, which is widely recognised as the primary impediment in KBS performance, is caused by a system’s inability to realise when its knowledge base is inadequate for a particular situation. RM partly addresses this through providing better generalisation; however, brittleness can be more directly addressed by detecting when such inadequacies occur. This process is commonly referred to as prudence analysis. The final part of this thesis proves the methods philosophical and methodological approach by illustrating how RM’s use of hidden and dynamic contextual information, allows the system to perform this analysis. Results show how experts can confidently leave the verification of cases when not warned, reducing brittleness and the knowledge acquisition effort.

This thesis shows that the idea of incorporating higher forms of context in symbolic reasoning domains is both possible and highly effective, vastly improving the robustness of the KBS approach. Not only does this facilitate improved classification through better generalisation, but also reduces the KA effort required by experts. Additionally, the methodology developed has further potential for many possible applications across numerous domains, such as Information Filtering, Data Mining, incremental induction and even reinforcement learning.
Acknowledgements

The long, sometimes exciting, occasionally dull, fulfilling road of developing a large solid body of research is at completion. To have the privilege of studying for a PhD is an honour, few find themselves, and even fewer find themselves at the other end holding a completed thesis dissertation. To have reached this stage a student must have strong and dedicated support from those around them and this is my opportunity to say thank you to those that put up with me over these past three years. This was especially a major challenge for them over the last six months when it has been impossible to hold a conversation with me for more than a minute before I would turn it to my PhD progress. This is one personality trait I am hoping to lose soon.

I would very much like to thank my supervisor Dr Byeong Ho-Kang. Byeong made himself available whenever I knocked, offering encouragement and insight. Byeong was a great supervisor as he was able to aid me most in those areas I needed the most help while giving me the freedom to roam when required. I would also like to thank my associate supervisors Dr Ray Williams and Professor Young Choi for their help, support and encouragement when required.

Three years is a long time to go without food, so I’d very much like to thank the Smart Internet Technology Co-operative Research Centre (SITCRC) for their very generous financial support. The SITCRC provided a regular income allowing my family and I to live, secure in the knowledge that we were provided for, while I embarked on my mad adventures. I would also like to thank the SITCRC for their non-financial support, providing research collaboration seminars, conferences and training sessions on everything from business management to ways for dealing with the press.

Over the last stage of producing this final thesis I would like to thank my readers Dr Peter Vamplew and Dr Ray Williams. This occurred at a time of year when both were becoming overloaded with work and in Peter’s case was moving house interstate.

I would also like to thank David Herbert, Luke Fletcher, Terry Bigwood and Tony Gray for their technical support throughout this three year process. It’s always good to know that there is someone around that can recover my Thesis.doc file when needed.

I would very much like to say thank you to Sung Sik Park, not only for putting up with me in the shared office for three years (a mighty effort on its own – especially when my kids come in and switch his server off), but also for the many discussions on the nuances of MCRDR. Also, I’d like to thank him for the use and help in using his MonClassifier database. This was an invaluable aid to the testing of the methodology developed in this thesis, in a real world environment.

During these three years I have had a number of helpful conversations with many of the other postgraduates and academic staff in the school of Computing. I would especially like to thank Dr Peter Vamplew, Dr Julian Dermoudy, Robert Ollington, Adam Berry, Bart Buelens, David Benda, Pauline Mak, Joel Scanlon, Phil Uren and Young Sok Kim.
Working on a PhD does not stop when you go home at the end of the day, it’s an all day, life encompassing task. Therefore, it is not just those at the university that need to be thanked. I would very much like to thank my mother, father and grandmother (affectionately known as SuperNan by my children) for their love and support, both over the last three years and all the years prior. I’d especially like to thank my mother for always being around to hear me waffle on and on about my thesis and to take the time to read it when completed.

I would especially like to say thank you to the three most beautiful and loving people I have ever had the pleasure to know, Uisce (6), Akalia-Shen (4) and Jayva-Kwan (1). Uisce regularly asked me how my thesis was going, Akalia-Shen liked to hear bits of it read to her as a bedtime story (I guess because it put her to sleep), and Jayva liked to draw on it. Thank you, to the three of you, for your understanding, patience and never ending affection.

Finally, without the support of your partner writing a thesis would never be possible. I would very much like to thank Anitra Goriss-Hunter for her love and support over these last three years. This is an especially important achievement as she is also simultaneously writing up her final PhD thesis. Thank you very much – and I guess its now my turn to reciprocate.
To Visce, Akalia-Shen
and Jayva-Kwan

Whose intelligence and love, I can only strive to emulate.
Chapter Overview

1 Introduction.. 1

Part 1: Philosophy and Literature
 2 Knowledge Based Systems: Philosophy and Systems.............................. 17
 3 Ripple Down Rules... 41
 4 Artificial Neural Networks .. 71

Part 2: Methodology and Initial Results
 5 Rated MCRDR (RM): Methodology ... 91
 6 Classification and Prediction .. 121

Part 3: Prudence Analysis
 7 Discovering the Knowledge Frontier... 191
 8 MonClassifier$_{RM}$: Venturing into the Real World.............................. 223
 9 Conclusion .. 237
1 Introduction ... 1
 1.1 Conceptual Overview ... 2
 1.1.1 Process of Practise ... 3
 1.1.2 Context .. 4
 1.1.3 Hidden Contexts .. 5
 1.2 Thesis Objectives.. 6
 1.3 Thesis Hypothesis .. 8
 1.4 Thesis Overview ... 9
 1.4.1 Methodology ... 9
 1.4.2 Classification and Prediction ... 10
 1.4.3 Prudence Analysis ... 11
 1.5 Thesis Organisation ... 12
 1.6 Summary .. 14

2 Knowledge Based Systems: Philosophy and Systems .. 17
 2.1 Philosophy of Knowledge applied to Artificial Intelligence 19
 2.1.1 Knowledge Acquisition ... 19
 2.1.2 Knowledge Representation ... 21
 2.1.3 Knowledge Maintenance .. 22
 2.1.4 Knowledge Based Systems ... 23
 2.2 Situated Cognition applied to Artificial Intelligence ... 29
 2.2.1 Knowledge Acquisition in Context ... 32
 2.2.2 Representing Knowledge in Context ... 32
 2.2.3 Maintaining Knowledge in Context ... 32
 2.2.4 Contextual Knowledge-Based Systems ... 33
 2.3 Hidden and Dynamic Context ... 36
 2.3.1 Implications for Knowledge Engineering and Maintenance 39
 2.4 Summary .. 40

3 Ripple-Down Rules .. 41
 3.1 Ripple-Down Rules Background .. 42
 3.1.1 GARVAN-ES1: A Maintenance Case-Study ... 42
 3.1.2 Implications ... 44
 3.2 Ripple-Down Rules Methodology .. 45
 3.2.1 Structure and Inference ... 46
 3.2.2 Learning ... 48
 3.2.3 Comparison of RDR with Other KBS Methodologies 50
 3.2.4 Problems with RDR ... 52
 3.3 Multiple Classification Ripple-Down Rules Methodology 53
 3.3.1 Structure and Inference ... 53
 3.3.2 Learning .. 55
 3.4 Refinements and Extensions .. 60
 3.4.1 MCRDR/FCA .. 61
 3.4.2 GENICA ... 62
 3.4.3 Other RDR Research ... 63
 3.5 Summary .. 70
4 Artificial Neural Networks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Neural Biology</td>
<td>72</td>
</tr>
<tr>
<td>4.2 History</td>
<td>73</td>
</tr>
<tr>
<td>4.3 Backpropagation</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1 Perceptron</td>
<td>76</td>
</tr>
<tr>
<td>4.3.2 Mathematics for Backpropagation</td>
<td>77</td>
</tr>
<tr>
<td>4.3.3 Classification, Generalisation and Fault Tolerance</td>
<td>79</td>
</tr>
<tr>
<td>4.3.4 Problems</td>
<td>80</td>
</tr>
<tr>
<td>4.4 Radial Basis Function</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1 Mathematics for RBFs</td>
<td>82</td>
</tr>
<tr>
<td>4.5 Growth Algorithms</td>
<td>83</td>
</tr>
<tr>
<td>4.5.1 Upstart Algorithm</td>
<td>83</td>
</tr>
<tr>
<td>4.5.2 Divide and Conquer</td>
<td>84</td>
</tr>
<tr>
<td>4.5.3 Tiling Algorithm</td>
<td>84</td>
</tr>
<tr>
<td>4.5.4 Cascade Correlation (CC)</td>
<td>85</td>
</tr>
<tr>
<td>4.5.5 Resource Allocating Network (RAN)</td>
<td>85</td>
</tr>
<tr>
<td>4.6 ANNs Finding Missing Variables</td>
<td>87</td>
</tr>
<tr>
<td>4.7 Other Classifiers</td>
<td>88</td>
</tr>
<tr>
<td>4.8 Summary</td>
<td>88</td>
</tr>
<tr>
<td>4.9.2 Discussion</td>
<td>119</td>
</tr>
<tr>
<td>4.9.1 Implementation</td>
<td>117</td>
</tr>
<tr>
<td>5.7.2 Discussion</td>
<td>115</td>
</tr>
<tr>
<td>5.7.1 Implementation</td>
<td>112</td>
</tr>
<tr>
<td>5.6.2 Discussion</td>
<td>111</td>
</tr>
<tr>
<td>5.6.1 Implementation</td>
<td>107</td>
</tr>
<tr>
<td>5.5.2 Discussion</td>
<td>110</td>
</tr>
<tr>
<td>5.5.1 Implementation</td>
<td>106</td>
</tr>
<tr>
<td>5.4.2 Discussion</td>
<td>107</td>
</tr>
<tr>
<td>5.4.1 Implementation</td>
<td>106</td>
</tr>
<tr>
<td>5.3.2 Discussion</td>
<td>106</td>
</tr>
<tr>
<td>5.3.1 Implementation</td>
<td>105</td>
</tr>
<tr>
<td>5.2.3 Artificial Neural Network Component</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2 MCRDR Component</td>
<td>98</td>
</tr>
<tr>
<td>5.2.1 System Design</td>
<td>95</td>
</tr>
<tr>
<td>5.1.4 RM Possibilities</td>
<td>95</td>
</tr>
<tr>
<td>5.1.3 Proposed Solution</td>
<td>94</td>
</tr>
<tr>
<td>5.1.2 Philosophy of Knowledge Revisited</td>
<td>93</td>
</tr>
<tr>
<td>5.1.1 Problem with MCRDR</td>
<td>93</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>92</td>
</tr>
<tr>
<td>5.0 Overview</td>
<td>91</td>
</tr>
</tbody>
</table>
6 Classification and Prediction ... 121
 6.1 Experimental Method ... 122
 6.1.1 Simulated Expertise ... 122
 6.1.2 Generalisation Experiment ... 131
 6.1.3 Online Learning Experiment .. 132
 6.1.4 Datasets .. 133
 6.2 Comparison of Proposed Methods .. 135
 6.2.1 Classification .. 135
 6.2.2 Prediction .. 162
 6.2.3 Further Discussion ... 168
 6.3 Comparing RM against MCRDR and ANNs 169
 6.3.1 Overview of ANN used .. 169
 6.3.2 Classification .. 170
 6.3.3 Prediction .. 183
 6.3.4 Further Discussion ... 185
 6.4 Summary ... 186

7 Discovering the Knowledge Frontier .. 191
 7.1 Review .. 192
 7.1.1 Brittleness ... 192
 7.1.2 Verification and Validation ... 193
 7.1.3 Prudence Analysis ... 194
 7.1.4 RDR Prudence Systems ... 195
 7.2 RMp: Prudence Methodology ... 196
 7.2.1 RMp(p): Prediction Method ... 197
 7.2.2 RMp(c): Classification Method ... 200
 7.3 Experimental Method ... 203
 7.3.1 Overview ... 203
 7.3.2 Simulated Experts ... 205
 7.3.3 Datasets .. 205
 7.4 Prudence Results .. 206
 7.4.1 Accuracy ... 207
 7.4.2 Number of Warnings ... 208
 7.4.3 Total Error ... 210
 7.4.4 Versatility of RM ... 210
 7.4.5 Learning Speed ... 213
 7.4.6 Error Distribution ... 214
 7.5 Using Prudence Warnings .. 215
 7.5.1 Rule Creation Comparison .. 216
 7.5.2 Classification Accuracy .. 218
 7.5.3 Non-Perfect Humans ... 219
 7.6 Summary ... 220
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Conceptual framework for human psychology, sociology, action and knowledge.</td>
<td>2</td>
</tr>
<tr>
<td>3-1</td>
<td>Shows the change in rule 22310.01 over a three year period.</td>
<td>43</td>
</tr>
<tr>
<td>3-2</td>
<td>Example of the RDR binary tree structure.</td>
<td>47</td>
</tr>
<tr>
<td>3-3</td>
<td>Example of creating and incorporating new knowledge in RDR.</td>
<td>49</td>
</tr>
<tr>
<td>3-4</td>
<td>Example of the MCRDR n-ary tree structure.</td>
<td>54</td>
</tr>
<tr>
<td>3-5</td>
<td>MCRDR tree showing the nodes that cornerstone cases should be taken.</td>
<td>58</td>
</tr>
<tr>
<td>3-6</td>
<td>Comparison of two rule selection methods.</td>
<td>59</td>
</tr>
<tr>
<td>4-1</td>
<td>Schematic diagram of a single neuron.</td>
<td>72</td>
</tr>
<tr>
<td>4-2</td>
<td>Example topologies for feed forward networks.</td>
<td>75</td>
</tr>
<tr>
<td>4-3</td>
<td>ARFN: A neuron for implementing a Gaussian-like response function.</td>
<td>86</td>
</tr>
<tr>
<td>5-1</td>
<td>Pseudo code algorithm for RM.</td>
<td>96</td>
</tr>
<tr>
<td>5-2</td>
<td>RM illustrated diagrammatically.</td>
<td>96</td>
</tr>
<tr>
<td>5-3</td>
<td>Example of the single-step-Δ-initialisation-rule shown diagrammatically.</td>
<td>110</td>
</tr>
<tr>
<td>5-4</td>
<td>Network structure of RM$_{bp(\Delta)}$.</td>
<td>113</td>
</tr>
<tr>
<td>5-5</td>
<td>Process used for adding new input and hidden nodes in RM$_{bp(\Delta)}$.</td>
<td>114</td>
</tr>
<tr>
<td>6-1</td>
<td>Example of a possible energy pattern used in the Multi-Class-Prediction simulated expert.</td>
<td>130</td>
</tr>
<tr>
<td>6-2</td>
<td>Step-by-step description of the generalisation experiment.</td>
<td>131</td>
</tr>
<tr>
<td>6-3</td>
<td>Step-by-step description of the online learning experiment.</td>
<td>132</td>
</tr>
<tr>
<td>6-4</td>
<td>Two charts comparing how each of the seven proposed methods perform on the Multi-Class dataset using the Linear Multi-Class simulated expert.</td>
<td>136</td>
</tr>
<tr>
<td>6-5</td>
<td>Two charts comparing how each of the seven proposed methods perform on the Multi-Class dataset using the Non-Linear Multi-Class simulated expert.</td>
<td>137</td>
</tr>
<tr>
<td>6-6</td>
<td>Two charts comparing how each of the seven proposed methods perform on the Chess dataset using the C4.5 simulated expert.</td>
<td>138</td>
</tr>
</tbody>
</table>
Figure 6-7: Two charts comparing how each of the seven proposed methods perform on the Tic-Tac-Toe dataset using the C4.5 simulated expert. ...139

Figure 6-8: Two charts comparing how each of the seven proposed methods perform on the Nursery dataset using the C4.5 simulated expert. ...140

Figure 6-9: Two charts comparing how each of the seven proposed methods perform on the Nursery dataset using the C4.5 simulated expert. ...141

Figure 6-10: Two charts comparing how each of the seven proposed methods perform on the Car Evaluation dataset using the C4.5 simulated expert. ...142

Figure 6-11: Two charts comparing how each of the seven proposed methods perform on the Multi-Class dataset using the non-linear simulated expert. ...155

Figure 6-12: Two charts comparing how each of the seven proposed methods perform on the Chess dataset using the C4.5 simulated expert. ...156

Figure 6-13: Two charts comparing how each of the seven proposed methods perform on the TTT dataset using the C4.5 simulated expert. ...157

Figure 6-14: Two charts comparing how each of the seven proposed methods perform on the Nursery dataset using the C4.5 simulated expert. ...158

Figure 6-15: Two charts comparing how each of the seven proposed methods perform on the Audiology dataset using the C4.5 simulated expert. ...159

Figure 6-16: Two charts comparing how each of the seven proposed methods perform on the Car Evaluation dataset using the C4.5 simulated expert. ...160

Figure 6-17: Two charts comparing how each of the seven proposed methods perform on the Multi-Class-Prediction dataset using the Multi-Class-Prediction simulated expert.163

Figure 6-18: Comparison of RM_{bp(Δ)} and RM_{bp(ε)} after training was completed on the Multi-Class-Prediction test. ...165

Figure 6-19: Two charts comparing how each of the seven proposed methods perform on the multi-class dataset using the multi-class-prediction simulated expert. ...167

Figure 6-20: Two charts comparing how each method RM_{bp(Δ)}, ANN_{bp} and MCRDR, perform on the Multi-Class dataset using the Linear Multi-Class simulated expert. ...171

Figure 6-21: Two charts comparing how each method RM_{bp(Δ)}, ANN_{bp} and MCRDR, perform on the Multi-Class dataset using the Linear Multi-Class simulated expert. ...172
Figure 6-22 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), \(\text{ANN}_{\text{bp}} \) and MCRDR, perform on the Chess dataset using the C4.5 simulated expert. ...173

Figure 6-23 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), \(\text{ANN}_{\text{bp}} \) and MCRDR, perform on the Tic-Tac-Toe dataset using the C4.5 simulated expert. ...174

Figure 6-24 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), \(\text{ANN}_{\text{bp}} \) and MCRDR, perform on the Nursery dataset using the C4.5 simulated expert. ...175

Figure 6-25 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), \(\text{ANN}_{\text{bp}} \) and MCRDR, perform on the Audiology dataset using the C4.5 simulated expert. ..176

Figure 6-26 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), \(\text{ANN}_{\text{bp}} \) and MCRDR, perform on the Car Evaluation dataset using the C4.5 simulated expert. ...177

Figure 6-27: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the multi-class dataset using the non-linear simulated expert. ...179

Figure 6-28: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the chess dataset using the C4.5 simulated expert. ...179

Figure 6-29: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the tic-tac-toe dataset using the C4.5 simulated expert. ...180

Figure 6-30: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the nursery dataset using the C4.5 simulated expert. ..180

Figure 6-31: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the audiology dataset using the C4.5 simulated expert. ..181

Figure 6-32: Chart comparing \(\text{RM}_{\text{bp}(\Delta)} \) against MCRDR and an ANN using backpropagation on the car evaluation dataset using the C4.5 simulated expert. ...181

Figure 6-30 Two charts comparing how each method \(\text{RM}_{\text{bp}(\Delta)} \), and \(\text{ANN}_{\text{bp}} \), perform on the Multi-Class-Prediction dataset using the Multi-Class-Prediction simulated expert. ..183

Figure 6-31 This chart compares how \(\text{RM}_{\text{bp}(\Delta)} \), and \(\text{NN}_{\text{bp}} \), perform on the Multi-Class-Prediction dataset using the Multi-Class-Prediction simulated expert. ...184

Figure 7-1: Conceptual diagram of knowledge distribution within a particular domain. ...193

Figure 7-2: Re-formatting of results shown in Figure 6-18.201
Figure 7-3: Chart comparing the accuracy of the two systems developed in this thesis: $RM_{p(p)}$ and $RM_{p(c)}$ against Compton et al’s (1996) results for each of the four datasets ... 207

Figure 7-4: Chart comparing the percentage of true negatives of the two systems developed in this thesis: $RM_{p(p)}$ and $RM_{p(c)}$, against Compton et al’s (1996) results for each of the four datasets tested. ... 208

Figure 7-5: Comparison of results from a range of tests using different threshold adjustment values .. 212

Figure 7-6: Comparison of the average percentage of cases that produced each of the four types of results over ten randomly generated trials. ... 214

Figure 7-7: Four stacked area charts showing whether there is any compounding effect on a KB when rules are missed. 217

Figure 7-8: Compares the full and trusting experts’ knowledge bases after training .. 218

Figure 8-1: PWIMS Architecture .. 225

Figure 8-2: Main view of the MonClassifier application ... 226

Figure 8-3: Comparison of the rule structures used in traditional MCRDR and that used in MonClassifier .. 228

Figure 8-4: Comparison of results from a range of tests using different parameter settings .. 234

Figure 8-5: Stacked area chart showing the average number of rules created when trusting the prudence system for the eHealth domain. .. 235
Table of Tables

Table 3-1: Three ways for adding new rules when correcting an MCRDR KB ...56
Table 6-1: Example of a randomly generated table used by the linear multi-class simulated expert ..125
Table 6-2: Two example cases being evaluated by the linear multi-class simulated expert ...126
Table 6-3: Example of a randomly generated table of attribute pairs127
Table 6-4: Two example cases being evaluated by the non-linear multi-class simulated expert ..127
Table 6-5: Compares the linear versions of RM (RM_{l(ε)} and RM_{l(Δ)}) 145
Table 6-6: Compares the non-linear versions of RM (RM_{bp(ε)} and RM_{bp(Δ)})..146
Table 6-7: Compares RM_{l(Δ)} and RM_{bp(Δ)} ..148
Table 6-8: Compares RM_{rbf} and RM_{rbf+} ..151
Table 6-9: Compares RM_{bp(Δ)} and RM_{rbf+} ..153
Table 7-1: Comparison of the averages between the two prudence analysis systems developed ..206
Table 8-1: Comparison of the raw averages and the calculated accuracy between the two prudence analysis systems developed on eHealth ..232