Chapter 9

Conclusions and Recommendations for Future Research

The unsteady mid-span aerodynamics of an outlet stator blade row in a 1.5-stage low-speed axial compressor has been experimentally and numerically investigated. The compressor contained three blade rows: inlet guide vanes (IGV), rotor and stator. Two stator blade rows with characteristically different blade profiles were studied: one of British C4 section and a controlled diffusion (CD) blade with circular arc leading edge profile.

The influence of turbulence on the stator inlet flow was experimentally investigated. A turbulence generating grid placed upstream from the compressor section produced turbulence levels typical of those experienced by an embedded stage in a multi-stage compressor. Surveys made using a single-element hot-wire probe in the rotor–stator axial space were analysed to determine the pitchwise variation of velocity and turbulence. These results were compared with previous measurements made by Hughes [83] at low inlet turbulence level. The measurements of Hughes [83] showed that an interaction between IGV wakes and rotor wakes caused a periodic accumulation of low-energy rotor wake fluid, which lead to a significant pitchwise variation of turbulence properties. In the present study, increased inlet turbulence was found to accelerate IGV wake diffusion and significantly reduce IGV wake–rotor wake interaction. This resulted in a more circumferentially uniform velocity and turbulence field at entry to the stator blade row. Hence, numerical modelling must account for
the appreciable effect of free-stream turbulence in order to accurately predict wake dispersion and interaction processes.

The influence of inlet turbulence and blade row clocking on the transitional flow behaviour of a C4 stator was experimentally investigated with high inlet turbulence. Measurements from a row of surface mounted hot-film sensors on a stator blade were analysed to determine the temporal variation of turbulent intermittency and probability of calmed flow around the stator blade. These were compared with previous measurements made by Hughes [83] at low inlet turbulence level. Hughes [83] varied the turbulence level experienced by the stator by changing the relative alignment between IGV and stator blade rows. Aligning the IGV wake streets in the stator passage exposed the stator to a turbulence level between passing rotor wakes of about 0.5 – 1.0%. Immersing the stator blade row in IGV wake turbulence caused the stator to experience a turbulence level between wakes of about 2.0 – 3.0%. Hot-film measurements made by Hughes [83] at medium and high compressor loading showed that aligning the IGV wakes in the stator passage resulted in significant laminar or calmed flow between wake-induced transitional strips on the suction surface. Immersing the stator in IGV wake turbulence resulted in greater turbulent flow between wake-induced transitional strips. The flow on the stator blade surface at low loading was least influence by clocking.

The hot-film measurements at high inlet turbulence with the IGV wakes aligned in the stator passage were found to closely resemble the low inlet turbulence case with the stator blade row immersed in IGV wake turbulence. This similarity was observed in all compressor loading cases. This suggests that with appropriate alignment, a 1.5-stage axial compressor may be used to reliably predict the blade element behaviour of an embedded stage in a multi-stage machine. It also suggests that clocking effects between adjacent pairs of rotor or stator blade rows are likely to be more significant in flows with low levels of background turbulence, such as in the first few blade rows of a multi-stage machine. The fact that the transitional flow behaviour changed little between the two clocking cases in the high inlet turbulence tests is not surprising considering the circumferentially uniform turbulence level at entry to the stator blade row.

The flow around the CD stator was studied to determine the influence of leading edge velocity spikes on boundary layer behaviour. Measurements from a row of slow-response surface pressure tappings agreed well with numerical predictions from a
steady quasi three-dimensional flow solver, MISES. The relative height of the leading edge velocity spikes was strongly influenced by stator incidence. At design incidence, the spikes on both surfaces were of approximately equal height. Increasing incidence increased the height of the suction surface spike and decreased the height of the pressure surface spike. The MISES flow solver predicted transition on the suction surface at the leading edge spike in all incidence cases greater than and equal to design. In incidence cases less than design, the MISES flow solver predicted transition further along the suction surface following peak suction. Transition on the pressure surface was predicted at the leading edge in all cases, where it occurred through a leading edge separation bubble.

The unsteady transitional flow on the CD stator surface was also studied using an array of surface mounted hot-film sensors. The measurements were analysed to determine the temporal variation of ensemble average intermittency and probability of calming flow on the stator blade surface. A region of accelerating flow on the forward part of the suction surface had a stabilising effect on the boundary layer, with a significant portion of the surface in a laminar or transitional state. Wake-induced transitional strips formed on the suction surface, growing to eventually form continuously turbulent flow. The origin of these strips moved progressively upstream as loading was increased, reaching the leading edge velocity spike at high incidence. Examination of suction surface hot-film data showed that turbulent spots and other transitional flow disturbances periodically formed very close to the leading edge \((s^* \approx 0.05) \). These disturbances were observed in all test cases, although their periodicity decreased as incidence and Reynolds number were reduced. These disturbances travelled along the surface with a mean convection velocity of about 0.7\(U \), often breaking down to form turbulent spots. Turbulent spots observed in the accelerating flow region had very low growth rates, and in some cases were relaminarised, either by acceleration or low Reynolds number effects. The flow on the pressure surface became turbulent at the leading edge in all cases except high incidence at low Reynolds number. The study shows that compressor blade leading edge profiles have a major influence on the boundary layer development over the whole surface.

The influence of incidence on CD stator losses was investigated. The flow field downstream from a stator blade element was surveyed over one a blade pitch using a three-hole probe and single-element hot-wire probe. The measurements were used to determine time-mean pressure loss coefficient and stator exit flow angle. These mea-
measurements were compared with predictions from the MISES flow solver. Reasonable agreement was found at low incidence; but this deteriorated at design and positive incidence where the MISES flow solver predicted early transition at the suction surface leading edge and gave loss-estimates that were too high. The failure of the MISES flow solver to accurately predict performance was attributed to a combination of unsteady and three-dimensional effects.

The effect of passing rotor wakes on the stability of stator blade boundary layers was studied. Flow simulations using the unsteady quasi three-dimensional flow solver, UNSFLO, were used to interpret the unsteady laminar flow behaviour at the leading edge of both C4 and CD stators. Rotor wake chopping was predicted to generate periodic fluctuations in boundary layer skin friction at the leading edge of stator blades. The predicted flow behaviour agreed favourably with measurements from surface mounted hot-film sensors. The periodic decreases in skin friction on the suction surface coincide with increases in both momentum thickness Reynolds number and shape factor, which are both individually destabilising. The sign of the shear stress fluctuations was reversed on the pressure surface, indicating a stabilising effect. It is concluded that rotor wake chopping in compressors has a destabilising effect on the suction surface boundary layer and a stabilising effect on the pressure surface boundary layer.

Examination of hot-film data near the leading edge of both C4 and CD stator blades revealed a variety of transitional flow phenomena. Instability wave packets characteristic of T–S wave packets were observed to amplify and break down into turbulent spots. Disturbances characteristic of streaky structures occurring in bypass transition were also observed. Examination of suction surface disturbance trajectories points to the leading edge as the principal receptivity site for transitional flow phenomena occurring on the suction surface of both the C4 and CD blading. This contrasts markedly with the C4 pressure surface behaviour where transition can occur remote from leading edge flow perturbations. In this case, the boundary layer is more likely to be influenced by the wake fluid discharging onto the blade surface. It is concluded that wake chopping is likely have less influence on wake-induced transition occurring on the suction surface of turbine blades, due to the similarity of this flow regime to the compressor blade pressure surface situation.

The investigations described in this thesis have identified several areas for future research. One area of interest is how the unsteady transitional flow on the surface of
the CD stator is altered by rotor wake frequency. This could be achieved by replacing
the existing rotor blade row with a blade row containing less blades, with longer chord
length and increased blade loading. The stator blade row would then experience wake
disturbances of larger magnitude at frequencies more typical of those found in modern
aeroengine compressors. This would be expected to have an appreciable effect on
transition between wake-induced turbulent strips as the pervasive effect of calming
diminishes.

This thesis has shown that compressor blade leading edge profiles have a major
influence on boundary layer development over the whole blade surface. Many questions
remain unanswered regarding the optimisation of leading edge geometry. Further
testing is required on blades with different leading edge profiles to determine the most
significant design parameters influencing loss and performance. The wedge angle of
circular arc leading edge profiles is likely to be important consideration. Larger wedge
angles reduce the height of leading edge velocity spikes and increase the favourable
pressure gradient near the leading edge, as seen in the study by Wheeler et al. [187].
This is likely to influence boundary layer behaviour at the leading edge.

Finally, there still insufficient data available on low Reynolds number boundary
layer phenomena. Most research in the field of boundary layer transition tends to avoid
the additional complexity of ‘viscous effects’ associated with low Reynolds number
flows by testing at high Reynolds number. However, studies in low Reynolds number
flows are essential in order to understand the boundary layer phenomena occurring at
the leading edge of turbomachine blades.
Appendix A

Stator Blade Instrumentation

A.1 C4 Stator Blade Instrumentation

Blade Surface Pressure Tappings

Two stator blades were instrumented with pressure tappings as detailed in the previous study of Solomon [154]. Each blade contained 14 tubes oriented in the spanwise direction. Pressure tappings were drilled completely though the blade (and also through these tubes) at several spanwise distances. This allowed surface pressure measurements of either blade surface at several spanwise positions by sealing unused tappings with tape. Solomon [154] surveyed the mid-span pressure distribution by sealing all but the mid-span suction surface tappings on one blade and all but the mid-span pressure tappings on the other blade.

Solomon [154] later removed the blade used for pressure surface measurements, replacing it with a blade instrumented with an array of surface mounted hot-film sensors (described in the following section). Consequently, only pressure measurements of the suction surface were made in the present study. The tapping locations for this blade are indicated on a mid-span blade profile in Fig. A.1 and tabulated data is given in Table A.1.

Surface Mounted Hot-Film Sensors

One stator blade was instrumented with an array of surface mounted hot-film sensors as described in previous studies by Solomon [154]. Detail of the sensor array and manufacture is given in Section 6.5.1. The sensor locations are shown on a mid-span blade profile in Fig. A.1 and tabulated data is given in Table A.2.
Figure A.1: Mid-span pressure tapping locations of C4 stator blade (top) and mid-span hot-film sensor locations of C4 stator blade (bottom)
Table A.1: Mid-span pressure tapping locations of C4 stator blade suction surface. All coordinates are relative to the geometrical blade leading edge defined as the intersection of the leading edge and camber line ($x = y = x^* = s^* = 0$). $x^* = x/c_x$ is dimensionless axial distance. $c_x = c \cos(\xi)$ is the axial projection of chord length. $s^* = s/s_{max}$ is dimensionless surface length. $c = 76.2$ mm and $s_{max} = 79.23$ mm (adapted from Solomon [154])

<table>
<thead>
<tr>
<th>#</th>
<th>x^* (mm)</th>
<th>s^* (mm)</th>
<th>x (mm)</th>
<th>y (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.0158</td>
<td>0.0580</td>
<td>1.05</td>
<td>4.22</td>
</tr>
<tr>
<td>3</td>
<td>0.0505</td>
<td>0.1067</td>
<td>3.35</td>
<td>7.33</td>
</tr>
<tr>
<td>4</td>
<td>0.0900</td>
<td>0.1556</td>
<td>5.97</td>
<td>10.17</td>
</tr>
<tr>
<td>5</td>
<td>0.1330</td>
<td>0.2048</td>
<td>8.82</td>
<td>12.84</td>
</tr>
<tr>
<td>6</td>
<td>0.1787</td>
<td>0.2546</td>
<td>11.85</td>
<td>15.36</td>
</tr>
<tr>
<td>7</td>
<td>0.2265</td>
<td>0.3047</td>
<td>15.02</td>
<td>17.76</td>
</tr>
<tr>
<td>8</td>
<td>0.2759</td>
<td>0.3552</td>
<td>18.30</td>
<td>20.04</td>
</tr>
<tr>
<td>9</td>
<td>0.3269</td>
<td>0.4058</td>
<td>21.68</td>
<td>22.20</td>
</tr>
<tr>
<td>10</td>
<td>0.4327</td>
<td>0.5074</td>
<td>28.70</td>
<td>26.14</td>
</tr>
<tr>
<td>11</td>
<td>0.5425</td>
<td>0.6089</td>
<td>35.98</td>
<td>29.55</td>
</tr>
<tr>
<td>12</td>
<td>0.6547</td>
<td>0.7095</td>
<td>43.42</td>
<td>32.40</td>
</tr>
<tr>
<td>13</td>
<td>0.7681</td>
<td>0.8087</td>
<td>50.94</td>
<td>34.68</td>
</tr>
<tr>
<td>14</td>
<td>0.8809</td>
<td>0.9056</td>
<td>58.42</td>
<td>36.43</td>
</tr>
</tbody>
</table>
Table A.2: Mid-span hot-film sensor locations of C4 stator blade. All coordinates are relative to the geometrical blade leading edge defined as the intersection of the leading edge and camber line \((x = y = x^* = s^* = 0)\). \(x^* = x/c_x\) is dimensionless axial distance. \(c_x = c \cos(\xi)\) is the axial projection of chord length. \(s^* = s/s_{max}\) is dimensionless surface length. \(c = 76.2\) mm, \(s_{max} = 79.23\) mm on the suction surface and \(s_{max} = 76.27\) on the pressure surface (adapted from Solomon [154])

<table>
<thead>
<tr>
<th>#</th>
<th>(x^*)</th>
<th>(s^*)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm)</td>
<td>(mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9730</td>
<td>0.9840</td>
<td>64.53</td>
<td>37.48</td>
</tr>
<tr>
<td>2</td>
<td>0.9351</td>
<td>0.9519</td>
<td>62.02</td>
<td>37.09</td>
</tr>
<tr>
<td>3</td>
<td>0.8975</td>
<td>0.9199</td>
<td>59.52</td>
<td>36.64</td>
</tr>
<tr>
<td>4</td>
<td>0.8599</td>
<td>0.8878</td>
<td>57.03</td>
<td>36.14</td>
</tr>
<tr>
<td>5</td>
<td>0.8225</td>
<td>0.8557</td>
<td>54.55</td>
<td>35.59</td>
</tr>
<tr>
<td>6</td>
<td>0.7854</td>
<td>0.8237</td>
<td>52.09</td>
<td>34.99</td>
</tr>
<tr>
<td>7</td>
<td>0.7483</td>
<td>0.7916</td>
<td>49.63</td>
<td>34.33</td>
</tr>
<tr>
<td>8</td>
<td>0.7117</td>
<td>0.7596</td>
<td>47.20</td>
<td>33.61</td>
</tr>
<tr>
<td>9</td>
<td>0.6750</td>
<td>0.7275</td>
<td>44.77</td>
<td>32.85</td>
</tr>
<tr>
<td>10</td>
<td>0.6389</td>
<td>0.6955</td>
<td>42.37</td>
<td>32.03</td>
</tr>
<tr>
<td>11</td>
<td>0.6030</td>
<td>0.6634</td>
<td>39.99</td>
<td>31.16</td>
</tr>
<tr>
<td>12</td>
<td>0.5672</td>
<td>0.6313</td>
<td>37.62</td>
<td>30.23</td>
</tr>
<tr>
<td>13</td>
<td>0.5320</td>
<td>0.5993</td>
<td>35.28</td>
<td>29.25</td>
</tr>
<tr>
<td>14</td>
<td>0.4970</td>
<td>0.5672</td>
<td>32.96</td>
<td>28.22</td>
</tr>
<tr>
<td>15</td>
<td>0.4623</td>
<td>0.5352</td>
<td>30.66</td>
<td>27.13</td>
</tr>
<tr>
<td>16</td>
<td>0.4281</td>
<td>0.5031</td>
<td>28.39</td>
<td>25.99</td>
</tr>
<tr>
<td>17</td>
<td>0.3943</td>
<td>0.4711</td>
<td>26.15</td>
<td>24.79</td>
</tr>
<tr>
<td>18</td>
<td>0.3610</td>
<td>0.4390</td>
<td>23.94</td>
<td>23.55</td>
</tr>
<tr>
<td>19</td>
<td>0.3281</td>
<td>0.4069</td>
<td>21.76</td>
<td>22.25</td>
</tr>
<tr>
<td>20</td>
<td>0.2955</td>
<td>0.3749</td>
<td>19.60</td>
<td>20.90</td>
</tr>
<tr>
<td>21</td>
<td>0.2637</td>
<td>0.3428</td>
<td>17.49</td>
<td>19.49</td>
</tr>
<tr>
<td>22</td>
<td>0.2322</td>
<td>0.3108</td>
<td>15.40</td>
<td>18.04</td>
</tr>
<tr>
<td>23</td>
<td>0.2014</td>
<td>0.2787</td>
<td>13.36</td>
<td>16.53</td>
</tr>
<tr>
<td>24</td>
<td>0.1713</td>
<td>0.2467</td>
<td>11.36</td>
<td>14.97</td>
</tr>
<tr>
<td>25</td>
<td>0.1417</td>
<td>0.2146</td>
<td>9.40</td>
<td>13.35</td>
</tr>
<tr>
<td>26</td>
<td>0.1132</td>
<td>0.1825</td>
<td>7.51</td>
<td>11.66</td>
</tr>
<tr>
<td>27</td>
<td>0.0858</td>
<td>0.1505</td>
<td>5.69</td>
<td>9.89</td>
</tr>
<tr>
<td>28</td>
<td>0.0596</td>
<td>0.1184</td>
<td>3.95</td>
<td>8.03</td>
</tr>
<tr>
<td>29</td>
<td>0.0353</td>
<td>0.0864</td>
<td>2.34</td>
<td>6.07</td>
</tr>
<tr>
<td>30</td>
<td>0.0136</td>
<td>0.0543</td>
<td>0.90</td>
<td>3.98</td>
</tr>
<tr>
<td>31</td>
<td>-0.0026</td>
<td>0.0223</td>
<td>-0.17</td>
<td>1.68</td>
</tr>
</tbody>
</table>
A.2 CD Stator Blade Instrumentation

Blade Surface Pressure Tappings

One CD stator blade was instrumented with 39 pressure tappings as described in Section 7.5.2. A single row of pressure tappings at mid-span were drilled according to a CAD model of the blade: the same model used for manufacturing the blade row. The pressure tapping locations obtained from the CAD model are shown on a mid-span profile in Fig. A.2 and tabulated data is given in Table A.3.

Surface Mounted Hot-Film Sensors

One stator was instrumented with an array of surface mounted hot-film sensors. Information of the array and manufacture is given in Section 7.6.1. The centre position of each sensor was measured using a telescope mounted on a stand with vernier scale. These measurements were referenced against a CAD model of the stator blade to confirm the sensor positions. This approach was estimated to give the position of each sensor centre within ±0.05 mm (sensor width was 0.2 mm). The sensor locations are indicated on a mid-span profile in Fig. A.2 and tabulated data is given in Table A.4.
Figure A.2: Mid-span surface pressure tapping locations of CD stator blade (top) and mid-span hot-film sensor locations of CD stator blade (bottom)
A.2 CD Stator Blade Instrumentation

<table>
<thead>
<tr>
<th>Suction Surface</th>
<th>#</th>
<th>x^*</th>
<th>s^*</th>
<th>x (mm)</th>
<th>y (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0076</td>
<td>0.0124</td>
<td>-1.02</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.0054</td>
<td>0.0249</td>
<td>-0.71</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0024</td>
<td>0.0377</td>
<td>0.31</td>
<td>5.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0123</td>
<td>0.0536</td>
<td>1.64</td>
<td>7.65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0253</td>
<td>0.0734</td>
<td>3.37</td>
<td>10.37</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0423</td>
<td>0.0982</td>
<td>5.63</td>
<td>13.70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0647</td>
<td>0.1295</td>
<td>8.61</td>
<td>17.75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0944</td>
<td>0.1682</td>
<td>12.57</td>
<td>22.61</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.1344</td>
<td>0.2165</td>
<td>17.90</td>
<td>28.35</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1884</td>
<td>0.2768</td>
<td>25.09</td>
<td>34.95</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.2617</td>
<td>0.3517</td>
<td>34.85</td>
<td>42.26</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.3604</td>
<td>0.4459</td>
<td>47.99</td>
<td>49.93</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.4646</td>
<td>0.5395</td>
<td>61.87</td>
<td>56.17</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.5574</td>
<td>0.6206</td>
<td>74.22</td>
<td>60.71</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.6388</td>
<td>0.6908</td>
<td>85.07</td>
<td>64.17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.7099</td>
<td>0.7516</td>
<td>94.53</td>
<td>66.88</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.7717</td>
<td>0.8041</td>
<td>102.76</td>
<td>69.07</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.8253</td>
<td>0.8494</td>
<td>109.89</td>
<td>70.86</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.8717</td>
<td>0.8938</td>
<td>116.08</td>
<td>72.35</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.9120</td>
<td>0.9227</td>
<td>121.44</td>
<td>73.61</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.9468</td>
<td>0.9531</td>
<td>126.08</td>
<td>74.66</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.9770</td>
<td>0.9778</td>
<td>130.10</td>
<td>75.55</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.0000</td>
<td>1.0000</td>
<td>132.94</td>
<td>73.91</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Surface</th>
<th>#</th>
<th>x^*</th>
<th>s^*</th>
<th>x (mm)</th>
<th>y (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1.0000</td>
<td>1.0000</td>
<td>132.94</td>
<td>73.91</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.9880</td>
<td>0.9763</td>
<td>131.56</td>
<td>70.94</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.9595</td>
<td>0.9501</td>
<td>127.78</td>
<td>69.35</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.9215</td>
<td>0.9146</td>
<td>122.71</td>
<td>67.22</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.8707</td>
<td>0.8669</td>
<td>115.94</td>
<td>64.37</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.8027</td>
<td>0.8037</td>
<td>106.90</td>
<td>60.54</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.7122</td>
<td>0.7186</td>
<td>94.84</td>
<td>55.34</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.5919</td>
<td>0.6055</td>
<td>78.83</td>
<td>48.14</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.4337</td>
<td>0.4536</td>
<td>57.75</td>
<td>37.81</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.2792</td>
<td>0.3020</td>
<td>37.18</td>
<td>26.50</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.1815</td>
<td>0.2010</td>
<td>24.17</td>
<td>17.85</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.1200</td>
<td>0.1337</td>
<td>15.97</td>
<td>11.41</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.0807</td>
<td>0.0890</td>
<td>10.74</td>
<td>6.85</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.0552</td>
<td>0.0591</td>
<td>7.36</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.0386</td>
<td>0.0391</td>
<td>5.14</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.0276</td>
<td>0.0258</td>
<td>3.68</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.0140</td>
<td>0.0129</td>
<td>1.86</td>
<td>-0.62</td>
<td></td>
</tr>
</tbody>
</table>

Table A.3: Mid-span pressure tapping locations of CD stator blade. All coordinates are relative to the geometrical blade leading edge defined as the intersection of the leading edge and camber line ($x = y = x^* = s^* = 0$). $x^* = x/c_x$ is dimensionless axial distance. $c_x = c\cos(\xi)$ is the axial projection of chord length. $s^* = s/s_{max}$ is dimensionless surface length. $c = 152.4$ mm and $s_{max} = 162.1$ mm on the suction surface and $s_{max} = 154.8$ mm on the pressure surface.
Table A.4: Mid-span hot-film sensor locations of CD stator blade. All coordinates are relative to the geometrical blade leading edge defined as the intersection of the leading edge and camber line ($x = y = x^* = s^* = 0$). $x^* = x/c_x$ is dimensionless axial distance. $c_x = c \cos(\xi)$ is the axial projection of chord length. $s^* = s/s_{max}$ is dimensionless surface length. $c = 152.4$ mm and $s_{max} = 162.1$ mm on the suction surface and $s_{max} = 154.8$ mm on the pressure surface.

<table>
<thead>
<tr>
<th>#</th>
<th>x^*</th>
<th>s^*</th>
<th>x</th>
<th>y</th>
<th>#</th>
<th>x^*</th>
<th>s^*</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>-0.0005</td>
<td>0.0005</td>
<td>-0.07</td>
<td>0.05</td>
<td>2</td>
<td>0.9737</td>
<td>0.9652</td>
<td>129.91</td>
<td>70.34</td>
</tr>
<tr>
<td>38</td>
<td>-0.0064</td>
<td>0.0083</td>
<td>-0.85</td>
<td>1.02</td>
<td>3</td>
<td>0.9558</td>
<td>0.9485</td>
<td>127.53</td>
<td>69.35</td>
</tr>
<tr>
<td>39</td>
<td>-0.0087</td>
<td>0.0161</td>
<td>-1.16</td>
<td>2.23</td>
<td>4</td>
<td>0.9380</td>
<td>0.9319</td>
<td>125.15</td>
<td>68.35</td>
</tr>
<tr>
<td>40</td>
<td>-0.0068</td>
<td>0.0239</td>
<td>-0.91</td>
<td>3.46</td>
<td>5</td>
<td>0.9024</td>
<td>0.8955</td>
<td>120.39</td>
<td>66.35</td>
</tr>
<tr>
<td>41</td>
<td>-0.0024</td>
<td>0.0316</td>
<td>-0.32</td>
<td>4.57</td>
<td>6</td>
<td>0.8667</td>
<td>0.8652</td>
<td>115.64</td>
<td>64.35</td>
</tr>
<tr>
<td>42</td>
<td>0.0074</td>
<td>0.0476</td>
<td>0.99</td>
<td>6.78</td>
<td>7</td>
<td>0.8311</td>
<td>0.8319</td>
<td>110.89</td>
<td>62.34</td>
</tr>
<tr>
<td>43</td>
<td>0.0175</td>
<td>0.0635</td>
<td>2.34</td>
<td>8.98</td>
<td>8</td>
<td>0.7955</td>
<td>0.7985</td>
<td>106.14</td>
<td>60.33</td>
</tr>
<tr>
<td>44</td>
<td>0.0280</td>
<td>0.0794</td>
<td>3.74</td>
<td>11.14</td>
<td>9</td>
<td>0.7600</td>
<td>0.7652</td>
<td>101.40</td>
<td>58.30</td>
</tr>
<tr>
<td>45</td>
<td>0.0389</td>
<td>0.0953</td>
<td>5.19</td>
<td>13.27</td>
<td>10</td>
<td>0.7245</td>
<td>0.7319</td>
<td>96.66</td>
<td>56.25</td>
</tr>
<tr>
<td>46</td>
<td>0.0616</td>
<td>0.1271</td>
<td>8.22</td>
<td>17.44</td>
<td>11</td>
<td>0.6891</td>
<td>0.6986</td>
<td>91.94</td>
<td>54.18</td>
</tr>
<tr>
<td>47</td>
<td>0.0858</td>
<td>0.1589</td>
<td>11.45</td>
<td>21.46</td>
<td>12</td>
<td>0.6538</td>
<td>0.6652</td>
<td>87.22</td>
<td>52.09</td>
</tr>
<tr>
<td>48</td>
<td>0.1113</td>
<td>0.1908</td>
<td>14.85</td>
<td>25.34</td>
<td>13</td>
<td>0.6185</td>
<td>0.6319</td>
<td>82.52</td>
<td>49.96</td>
</tr>
<tr>
<td>49</td>
<td>0.1381</td>
<td>0.2226</td>
<td>18.43</td>
<td>29.05</td>
<td>14</td>
<td>0.5834</td>
<td>0.5986</td>
<td>77.84</td>
<td>47.80</td>
</tr>
<tr>
<td>50</td>
<td>0.1663</td>
<td>0.2544</td>
<td>22.19</td>
<td>32.59</td>
<td>15</td>
<td>0.5484</td>
<td>0.5652</td>
<td>73.17</td>
<td>45.60</td>
</tr>
<tr>
<td>51</td>
<td>0.1957</td>
<td>0.2863</td>
<td>26.10</td>
<td>35.94</td>
<td>16</td>
<td>0.5136</td>
<td>0.5319</td>
<td>68.53</td>
<td>43.36</td>
</tr>
<tr>
<td>52</td>
<td>0.2262</td>
<td>0.3181</td>
<td>30.17</td>
<td>39.11</td>
<td>17</td>
<td>0.4790</td>
<td>0.4986</td>
<td>63.90</td>
<td>41.07</td>
</tr>
<tr>
<td>53</td>
<td>0.2577</td>
<td>0.3499</td>
<td>34.39</td>
<td>42.09</td>
<td>18</td>
<td>0.4445</td>
<td>0.4653</td>
<td>59.30</td>
<td>38.74</td>
</tr>
<tr>
<td>54</td>
<td>0.2903</td>
<td>0.3817</td>
<td>38.73</td>
<td>44.88</td>
<td>19</td>
<td>0.4102</td>
<td>0.4319</td>
<td>54.72</td>
<td>36.36</td>
</tr>
<tr>
<td>55</td>
<td>0.3236</td>
<td>0.4136</td>
<td>43.18</td>
<td>47.49</td>
<td>20</td>
<td>0.3760</td>
<td>0.3986</td>
<td>50.16</td>
<td>33.95</td>
</tr>
<tr>
<td>56</td>
<td>0.3577</td>
<td>0.4454</td>
<td>47.73</td>
<td>49.92</td>
<td>21</td>
<td>0.3420</td>
<td>0.3653</td>
<td>45.62</td>
<td>31.49</td>
</tr>
<tr>
<td>57</td>
<td>0.3925</td>
<td>0.4772</td>
<td>52.36</td>
<td>52.18</td>
<td>22</td>
<td>0.3083</td>
<td>0.3319</td>
<td>41.13</td>
<td>28.97</td>
</tr>
<tr>
<td>58</td>
<td>0.4277</td>
<td>0.5090</td>
<td>57.07</td>
<td>54.29</td>
<td>23</td>
<td>0.2750</td>
<td>0.2986</td>
<td>36.69</td>
<td>26.34</td>
</tr>
<tr>
<td>59</td>
<td>0.4634</td>
<td>0.5409</td>
<td>61.83</td>
<td>56.27</td>
<td>24</td>
<td>0.2422</td>
<td>0.2653</td>
<td>32.32</td>
<td>23.60</td>
</tr>
<tr>
<td>60</td>
<td>0.4997</td>
<td>0.5729</td>
<td>66.67</td>
<td>58.14</td>
<td>25</td>
<td>0.2101</td>
<td>0.2320</td>
<td>28.03</td>
<td>20.73</td>
</tr>
<tr>
<td>61</td>
<td>0.5361</td>
<td>0.6047</td>
<td>71.52</td>
<td>59.89</td>
<td>26</td>
<td>0.1786</td>
<td>0.1986</td>
<td>23.83</td>
<td>17.74</td>
</tr>
<tr>
<td>62</td>
<td>0.5727</td>
<td>0.6365</td>
<td>76.41</td>
<td>61.55</td>
<td>27</td>
<td>0.1479</td>
<td>0.1653</td>
<td>19.73</td>
<td>14.61</td>
</tr>
<tr>
<td>63</td>
<td>0.6095</td>
<td>0.6684</td>
<td>81.32</td>
<td>63.12</td>
<td>28</td>
<td>0.1179</td>
<td>0.1320</td>
<td>15.73</td>
<td>11.35</td>
</tr>
<tr>
<td>64</td>
<td>0.6465</td>
<td>0.7002</td>
<td>86.26</td>
<td>64.62</td>
<td>29</td>
<td>0.0887</td>
<td>0.0986</td>
<td>11.83</td>
<td>7.98</td>
</tr>
<tr>
<td>65</td>
<td>0.6837</td>
<td>0.7320</td>
<td>91.21</td>
<td>66.05</td>
<td>30</td>
<td>0.0744</td>
<td>0.0820</td>
<td>9.92</td>
<td>6.25</td>
</tr>
<tr>
<td>66</td>
<td>0.7209</td>
<td>0.7639</td>
<td>96.19</td>
<td>67.43</td>
<td>31</td>
<td>0.0603</td>
<td>0.0653</td>
<td>8.04</td>
<td>4.49</td>
</tr>
<tr>
<td>67</td>
<td>0.7583</td>
<td>0.7957</td>
<td>101.17</td>
<td>68.75</td>
<td>32</td>
<td>0.0463</td>
<td>0.0487</td>
<td>6.18</td>
<td>2.71</td>
</tr>
<tr>
<td>68</td>
<td>0.7958</td>
<td>0.8275</td>
<td>106.17</td>
<td>70.03</td>
<td>33</td>
<td>0.0326</td>
<td>0.0320</td>
<td>4.34</td>
<td>0.90</td>
</tr>
<tr>
<td>69</td>
<td>0.8333</td>
<td>0.8593</td>
<td>111.18</td>
<td>71.27</td>
<td>34</td>
<td>0.0257</td>
<td>0.0238</td>
<td>3.34</td>
<td>0.03</td>
</tr>
<tr>
<td>70</td>
<td>0.8709</td>
<td>0.8912</td>
<td>116.19</td>
<td>72.47</td>
<td>35</td>
<td>0.0173</td>
<td>0.0157</td>
<td>2.30</td>
<td>-0.50</td>
</tr>
<tr>
<td>71</td>
<td>0.9085</td>
<td>0.9230</td>
<td>121.22</td>
<td>73.64</td>
<td>36</td>
<td>0.0079</td>
<td>0.0076</td>
<td>1.05</td>
<td>-0.49</td>
</tr>
<tr>
<td>72</td>
<td>0.9424</td>
<td>0.9548</td>
<td>126.25</td>
<td>74.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>0.9666</td>
<td>0.9897</td>
<td>128.77</td>
<td>75.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Design of the Turbulence Grid

The turbulence grid was designed to produce turbulence properties at entry to the stator blade similar to those measured in multi-stage compressors by Camp and Shin [18]. This study showed that multi-stage compressors operate with a typical background turbulence intensity of 4% and integral length scale of $\Lambda_x/c = 0.06$.

The turbulence grid design was based on the data of Roach [135], which gives test data and empirical correlations for pressure loss, turbulence intensity and integral length scale downstream from several types of grids and arrays of parallel bars.

The pressure loss resulting from the grid was also an important design consideration. It had to be sufficiently small to allow the compressor to operate at the same operating points used in previous studies to allow comparisons between measurements made both with and without the grid. A circular cross section was chosen since it gives a lower pressure loss for a given size than a rectangular section (see Roach [135]).

The final design consisted of 38 brass rods spanning radially between two brass rings. Each ring was constructed by rolling a rectangular brass section (19.3 mm by 3.2 mm) to fit firmly against the compressor hub and casing walls. Countersunk holes were drilled at evenly spaced intervals around the ring. Each rod was placed between the inner and outer rings and fastened at each end by a countersunk screw. All rods were a standard diameter of 7.84 mm. The final assembly was located in the compressor approximately 175 mm upstream from the IGV blade row. Each ring was fixed to the hub and casing walls by 4 countersunk screws.

The following sections provide detail of the predicted turbulence properties and pressure loss resulting from the grid.
B.1 Turbulence Intensity

Roach [135] provides correlations for the one-dimensional variation of turbulence properties with downstream distance from turbulence grids. The turbulence intensity behind a parallel array of round rods may be described by

$$Tu = 80 \left(\frac{x}{D} \right)^{-\frac{1}{5}}$$

where D is the rod diameter, x is the distance downstream and Tu is the corresponding turbulence intensity expressed as a percentage.

The streamwise distances from the grid to the IGV and stator blade rows were estimated from time-mean particle trajectories These were determined to be 187 mm and 493 mm respectively (taken as variable x in Eq. (B.1.1)). Substituting these values into Eq. (B.1.1) yields the following turbulence intensity at entry the IGV and stator blade rows (using a rod diameter of $D = 7.94$ mm)

$$(Tu)_{IGV} = 8.7\%$$

$$(Tu)_{stator} = 4.3\%$$

B.2 Integral Length Scale

Roach [135] correlates the integral length of turbulence downstream from grids and parallel arrays of bars as

$$\frac{\Lambda_x}{c} = \left(\frac{D}{c} \right) 0.2 \sqrt{\frac{x}{D}}$$

Substituting the estimated distances from B.1 gives

$$(\Lambda_x/c)_{IGV} = 0.049$$

$$(\Lambda_x/c)_{stator} = 0.081$$

where c is the chord length of the CD stator

B.3 Pressure Loss

Roach [135] also defines a pressure loss coefficient for grids and arrays of parallel bars.
This may be written as

\[k_g = \frac{\Delta P}{0.5 \rho V^2} = A \left(\frac{1}{\beta^2} - 1 \right)^B \]

(B.3.1)

where the \(\beta \) is the grid porosity, and \(A, B \) are empirical constants. Using the test data for a parallel array of cylindrical rods with spacing equal to the mid-span spacing of the turbulence grid gives \(\beta = 0.89, A = 0.53 \) and \(B = 1 \) This gives a loss factor of \(k_g = 0.13 \).

The reduction in compressor flow coefficient resulting from the pressure loss associated with the grid was obtained from the performance measurements made by Oliver [122]. The ‘system resistance’ resulting from the natural pressure loss of the research compressor varies with throttle opening. The limiting case of maximum flow coefficient occurs at large throttle opening \((\phi = 0.90 \text{ at 20 inches throttle opening}) \).

The system loss corresponding to this operating point may be assumed equal to difference in total pressure across the compressor. Expressing this loss term in the same form as Eq. (B.3.1) results in \(k_{s_{no-grid}} = 0.50 \). The system resistance including the turbulence grid is \(k_{s_{grid}} = k_{s_{no-grid}} + k_g = 0.63 \) Matching this result to the compressor characteristic given in Oliver [122] gives a new operating point of \(\phi = 0.86 \), which allows operation at the high flow coefficient test case \(\phi = 0.84 \). The measured change in flow coefficient at a throttle setting of 22 inches was \(\Delta \phi = -0.036 \) (C4 stator, \(Re_c = 120000 \)) compares well with the predicted value of \(\Delta \phi = -0.04 \).
Appendix C

Compressor Reference Pressure

Prior to installation of the turbulence grid, the dynamic pressure at inlet to the compressor was measured using a pitot-static tube positioned between the inlet contraction and the IGV blade row. However, introducing a turbulence grid upstream from this reference would affect its accuracy, thus requiring a new reference pressure.

A CFD investigation of the inlet contraction revealed that a large pressure differential develops across the inner and outer surfaces. The study indicated the position corresponding to the largest differential and that that pressure tappings placed at this location would not be altered by a downstream grid.

Following this investigation, static ring tappings were placed on the inner and outer surfaces of the inlet contraction. The resulting pressure differential was calibrated against the existing pitot-static tube reference prior to installation of the turbulence grid. The results were used to determine a new method for calculating the compressor inlet dynamic pressure from the measured pressure differential across the inlet contraction.

This Appendix details the CFD investigation of the inlet contraction and presents the calibration of the new reference for determining the compressor inlet dynamic pressure.

C.1 Model of Research Compressor Inlet Contraction

A computational study was undertaken to investigate the flow through the inlet contraction. Commercial CFX software (AEA Technology Inc) was used for the analysis. The software included tools for creating geometry, meshing, solving and post-processing. The following sections describe the CFD model and present the key results.
C.1 Model of Research Compressor Inlet Contraction

Model Domain

The domain of the CFD model may be described by several regions of flow: entry to the inlet screen, between the shell and core pieces of the contraction, and through the annular section corresponding to the working section. The compressor was not modelled since the objective of the study was to determine the influence of the grid on the inlet flow. The flow through the model was assumed circumferentially uniform and axisymmetrical. These assumptions allowed the model size to be reduced to one quarter of full size by using symmetry planes in the axial–radial directions. A rendered view of the model geometry is shown in the top part of Fig. C.1.

Boundary Conditions

Quadratic source terms were included in the momentum equations to represent pressure losses resulting from the inlet screen and turbulence grid. The source terms were applied to the relevant direction components of the momentum equations. For example a loss in the x-direction the term may be expressed by

\[k^* = \frac{1}{U^2} \frac{dP}{dx} = \frac{\rho k}{2\Delta x} \] \hspace{1cm} (C.1.1)

where the k is the conventional loss coefficient of the form given in Eq. (B.3.1). The pressure loss coefficients were estimated from correlations given by Roach [135]. The pressure loss terms could be removed by simply setting the loss term to zero.

The mass flow rate through the model was fixed by specifying a constant velocity at exit. This corresponded to medium compressor load \(\phi = 0.675 \) at \(Re_c = 120000 \) (\(V_a \approx 16 \text{ m/s} \)). A constant total pressure at Standard Temperature and Pressure was applied at the model inlet.

Computational Mesh

The mesh consisted of prismatic elements (pentahedral) attached to all wall surfaces and tetrahedral elements in the remaining free-stream flow. The solver did not allow use of thin surfaces to represent the inlet screen and turbulence grid. Instead, these were modelled by thin layer of tetrahedral elements. The final mesh contained a total of approximately \(1.4(10)^6 \) elements.
Model Parameters

The CFX model parameters are summarised in Table C.1. Convergence was assumed to have occurred when all the flow residuals had reduced by at least 3 orders of magnitude.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solver</td>
<td>3-D, Steady-state, Incompressible</td>
</tr>
<tr>
<td>Advection Scheme</td>
<td>High Accuracy Second-Order</td>
</tr>
<tr>
<td>Fluid properties</td>
<td>Incompressible, Isothermal Air at STP</td>
</tr>
<tr>
<td>Turbulent Closure</td>
<td>Standard $k - \epsilon$</td>
</tr>
<tr>
<td>Wall Functions</td>
<td>Scalable</td>
</tr>
</tbody>
</table>

Table C.1: Table of CFX model parameters

Solution Results

The calculated y^+ values for the wall functions were within the range $5 \leq y^+ \leq 110$. This is close to the range of $20 \leq y^+ \leq 100$ recommended in the CFX documentation [89]. The lowest values occurred on the outside facing surfaces of the core and casing pieces in regions of slowly moving flow. This not considered to adversely effect the solution results.

An inlet pressure coefficient may be defined as

$$C_{P_{\text{int}}} = \frac{2(P_{\text{inlet}} - p)}{\rho V_{\text{out}}^2}$$ \hspace{1cm} (C.2.1)

where P_{inlet} is the total pressure at inlet to the model, p is the static pressure and $\frac{1}{2} \rho (V_{\text{out}})^2$ is the average dynamic pressure at the model outlet downstream from the position of the turbulence grid.

The top part of Fig. C.1 shows the pressure coefficient defined by Eq. (C.2.1) on a radial–axial section through the intake contraction. A local region of low pressure is observed close to shell piece as the flow is turned 90°. This contrasts with the pressure distribution on the core piece where the pressure remains higher and the gradient is much lower. Static pressure drops are observed across both the inlet screen and the turbulence grid.
Figure C.1: Numerical simulation of research compressor inlet contraction (CFX). Rendered view of intake model (top) with corresponding contours of pressure coefficient on a radial plane and pressure coefficient of intake surfaces with and without loss terms for the grid included (bottom)
The bottom part of Fig. C.1 shows variation of pressure coefficient along each surface with axial distance. The axial coordinate is consistent with the top part of the figure. Solution results are presented for both cases with and without inclusion of the loss term representing the turbulence grid. The results show the surface pressure distribution of the intake contraction is not significantly influenced by the pressure drop associated with the turbulence grid. These results suggest that the static pressure differential across the inlet contraction may be calibrated to determine the inlet dynamic pressure at compressor inlet.

C.2 Calibration of Inlet Contraction

A new method was developed for estimating the compressor inlet dynamic pressure based on the static pressure differential across the inlet contraction. The method had to be sufficiently simple to be calculated “real-time” by the computer controlling the wind tunnel. The method is summarised below.

The contraction pressure coefficient may be defined by

\[C_{P_{\text{con}}} = \frac{2(p_c - p_s)}{\rho (V_a)^2} \]

(C.2.1)

where the static pressures \(p_c \) and \(p_s \) shown in Fig. C.1 are measured by ring tappings. The dynamic pressure at inlet to the compressor \(\frac{1}{2} \rho (V_a)^2 \) is measured by the reference pitot-static tube at inlet to the compressor. The contraction pressure coefficient \(C_{P_{\text{con}}} \) remains approximately constant at 1.3 for varying compressor inlet Reynolds number \(Re_a \) and flow coefficient \(\phi \): this first-order approximation allows the compressor inlet velocity \(V'_a \) to be estimated from

\[V'_a = \sqrt{\frac{2(p_c - p_s)}{1.3\rho}} \]

(C.2.2)

This allows the approximate values of inlet Reynolds number and flow coefficient to be estimated from

\[Re'_a = \frac{Re_c (V'_a)}{U_{mb}} \]

(C.2.3)

\[\phi' = \frac{Re'_a}{Re_c} = \frac{V'_a}{U_{mb}} \]

(C.2.4)

These values may be used to correct the contraction pressure for Reynolds number
and flow coefficient effects. The corrected inlet contraction coefficient may be written as

$$C'_{P\text{con}} = 1.352 - 8.99Re_a^{-0.469} + \Delta$$ \hspace{1cm} (C.2.5)

where Δ is a flow coefficient correction given by

$$\Delta = \begin{cases}
2.69\phi^2 - 3.93\phi + 1.431, & \phi \leq 0.730 \\
0, & \phi \geq 0.730
\end{cases}$$ \hspace{1cm} (C.2.6)

The final values of compressor inlet velocity and flow coefficient are determined from Eq. (C.2.5). This may be expressed as

$$V_a = \sqrt{\frac{2(P_c - P_s)}{\rho C'_{P\text{con}}}}$$ \hspace{1cm} (C.2.8)

$$\phi = \frac{V_a}{U_{mb}}$$ \hspace{1cm} (C.2.9)

Figure C.2 compares the new method with measurements from the original reference for both C4 and CD stators. Although there is considerable scatter in the data, the flow coefficient calculated using the new method is within 1% of the existing reference over the range of flow coefficients used for testing in this thesis ($0.6 < \phi < 0.84$).
Bibliography

[89] AEA Technology Inc. CFX-5.5.1 documentation, 1998.

