Description and quantification of developmental abnormalities in a natural *Sepioteuthis australis* spawning population (Mollusca: Cephalopoda)

F. C. Gowland¹,*, N. A. Moltschaniwskyj², M. A. Steer², ³

¹Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
²School of Aquaculture, and ³Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1-370, Launceston, Tasmania 7250, Australia

ABSTRACT: Eggs of the southern calamary *Sepioteuthis australis* were sampled from spawning sites off eastern Tasmania, Australia, during an austral spring/summer spawning season. At fortnightly intervals, 3 unfouled and 3 biofouled egg strands were sampled from 6 to 23 distinct egg masses ($N_{eggs} = 2649$). Highly significant variation was noted between sample dates in the frequency of unfertilised eggs, developmental abnormalities and egg mortalities. Unfertilised eggs were only found during late October and early November and represented a mean $2.12 \pm 1.25\%$ SE and $0.58 \pm 0.58\%$ SE eggs per strand respectively. Frequency of abnormality varied significantly between sample dates and ranged from $8.35 \pm 1.86\%$ SE eggs per strand in late November to $0.92 \pm 0.41\%$ SE in late December. Abnormalities were arbitrarily categorised as defects in external yolk sac morphology, reduced embryonic size, mantle deformities, eye deformities and arm deformities. Defects in external yolk sac morphology were found throughout the spawning season and accounted for 46.3% of all abnormalities. Incidence of mortality varied significantly between sample dates and ranged from $1.40 \pm 0.68\%$ SE per strand in late October to $11.61 \pm 3.23\%$ SE in early January. Highly significant correlation was noted between incidence of developmental abnormality and within-strand egg position. Biofouled egg strands were characterised by comparatively low incidences of unfertilised and dead eggs. The influences of environment, egg position and biofouling upon embryonic development in *S. australis* are discussed.

KEY WORDS: Squid ∙ Embryos ∙ Abnormality ∙ Mortality ∙ Temperature ∙ Egg position ∙ Biofouling

© Inter-Research 2002 · www.int-res.com

INTRODUCTION

Developmental abnormalities have been identified within the eggs and embryos of many marine taxa and are typically associated with unfavourable developmental conditions. Elevated water temperature generates abnormalities in embryos of the echinoid *Arachnoidea placenta* (Chen & Chen 1992), larvae of the Arctic cod *Boreogadus saida* (Graham & Hop 1995) and hatchlings of the tilapia *Oreochromis mossambicus* (Wang & Tsai 2000). Increased salinity promotes abnormalities in megalopae of the crab *Rhithropanopeus harrisii* (Gonçalves et al. 1995), and exposure to UV-B radiation induces embryonic abnormalities in the green sea urchin *Strongylocentrotus droebachiensis* (Adams & Shick 2001). In situ sampling of amphipod populations in the Baltic Sea indicates rates of embryonic abnormality between 1.5 and 4.9% (*Monoporeia affinis*; Sundelin & Eriksson 1998). Similar sampling of copepod nauplii off Japan suggests an incidence of abnormality between 20 and 40% (*Pseudocalanus newmani*; Ban et al. 2000). The extent of variation between and within these estimates may reflect class, species, population and/or season specificity in frequency of embryonic abnormality. Distinct seasonality has been noted in incidence of abnormal eggs, embryos and veligers within gastropod populations; abnormalities are most prevalent within broods developing outside the main reproductive season (*Littorina saxatilis*: Sokolova 1995; *L. neglecta*: Johnson et al. 2000). Irrespective of cause,

*Email: f.gowland@abdn.ac.uk

Resale or republication not permitted without written consent of the publisher
variation in the incidence of embryonic abnormality may potentially influence rates of recruitment with flow-on effects to population size and structure. For short-lived species, such variation in successful production of young can have a significant impact. Cephalopod populations are characterised by life-history traits such as short-life spans, semelparity and rapid response to variation in environmental conditions (Rodhouse 2001). Variation in the population size and structure of cephalopod populations may, in part, reflect variation in rates of embryonic abnormality.

Mature loliginid squid typically aggregate in coastal waters to mate and spawn, e.g. *Loligo opalescens* (McGowan 1954), *L. pealei* (Arnold 1962), *L. vulgaris reynaudii* (Sauer et al. 1993), *Sepioteuthis lessoniana* (Segawa 1987) and *S. australis* (Moltschaniwskyj & Pecl unpubl.). Some of the loliginids produce multiple batches of eggs (e.g. *L. pealei*: Maxwell & Hanlon 2000), with successive batches being laid over a period of several weeks (e.g. *L. vulgaris*, *L. forbesi*: Rocha & Guerra 1996; *L. pealei*: Maxwell et al. 1998; *L. reynaudii*: Melo & Sauer 1999; *S. australis*, *S. lessoniana*: Pecl 2001). Individually encapsulated eggs are collectively packaged within gelatinous material to form discrete egg strands (Boletzky 1989). This gelatinous wrapping confers physical protection against mechanical abrasion and chemical protection against microbial infection (e.g. Biggs & Epel 1991). The spawning behaviour of *S. australis* is consistent with the general loliginid trend. Between October and December each year, large numbers of mature squid aggregate in coastal waters around Tasmania, Australia, to mate and spawn (Moltschaniwskyj & Pecl unpubl.). Mated females attach multiple egg strands, typically containing between 3 and 9 eggs, onto seagrass or macroalgae holdfasts. Collective deposition of egg strands leads to the formation of discrete egg masses containing <10 or >600 egg strands (Moltschaniwskyj & Pecl unpubl.). In common with other cephalopod species, developmental rate in *S. australis* is positively associated with water temperature (Steer et al. 2002). With a life expectancy of 6 to 10 mo (Pecl 2000), the embryonic phase of *S. australis* is equivalent to ~20% of the posthatching life span and represents both a critical formative phase and a significant proportion of the entire life cycle. *S. australis* embryos undergo direct development to hatch as miniature juveniles of basic adult form. Typical for short-lived species, the success of future squid generations depends entirely upon the ability of present generations to produce viable offspring. Therefore, correct embryonic development represents an important component of this ability.

The present study provides the first *in situ* assessment of abnormalities within a natural cephalopod population. Incidence of developmental abnormality was quantified within a shallow spawning and commercially exploited *Sepioteuthis australis* population off the east coast of Tasmania. Morphological abnormalities have previously been reported in cephalopod eggs reared under laboratory conditions (e.g. Naef 1928, Ranzi 1929, Marthy 1969). Experimental elevation of temperature promotes abnormalities in embryos of the squids *Illex illecebrosus* (O’Dor et al. 1982), *Todarodes pacificus* (Sakurai et al. 1996), *Loligo vulgaris reynaudii* (Oosthuizen et al. 2002b) and *L. forbesi* (Gowland et al. 2002). Hypoxic conditions at the centre of egg masses induce retardation and abnormal embryonic development in both squid (*Loligo* spp.: Arnold 1990) and oysters (*Crassostrea virginica*: Baker & Mann 1994). Conversely, biofouling of egg capsules has positive effects upon embryonic development in some molluscs and amphibians (e.g. Cohen & Strathmann 1996, Pinder & Friet 1994). The specific aims of this study were to identify and quantify developmental abnormalities typically observed in *S. australis* embryos, and to assess factors affecting incidence of developmental abnormalities, e.g. temperature, within-mass egg position and biofouling.

MATERIALS AND METHODS

Sepioteuthis australis egg masses were sampled from spawning grounds situated in Great Oyster Bay, eastern Tasmania, Australia (42° 07′ 34″ S, 148° 17′ 51″ E). At fortnightly intervals between October 2000 and January 2001, SCUBA divers searched 3 discrete areas of the seagrass *Amphibolis antarctica* for *S. australis* egg masses (Fig. 1). All sample sites were located within 0.5 km of the shore in 4 to 8 m of water. Particular emphasis was...
placed upon locating egg strands that contained embryos close to hatching. Developmental stage, early or late, was estimated in situ based on egg capsule size and embryo morphology (primarily eye pigmentation). Three unfouled and 3 biofouled egg strands were removed from between 6 and 23 egg masses per sampling trip. Unfouled egg strands were defined as those displaying 0 to 10% surface coverage by epiphytic algal growth (Fig. 2A). Fouled egg strands were defined as those displaying 50 to 100% surface coverage (Fig. 2B). All material was bagged in fresh seawater and stored out of direct sunlight prior to dissection.

Egg strands were examined within 8 h of field collection. Embryos were dissected out and numbered sequentially according to their position within the egg strand (Position 1 = proximal/fixed end of the strand). Individuals were examined under a dissection microscope and allocated a developmental stage according to the criteria described by Steer (unpubl.) for *Sepioteuthis australis*, which follows that of Segawa (1987) for *S. lessoniana*. Incidence of unfertilised eggs, identified by an opaque appearance and lack of cell division, was calculated per egg strand as a function of sample date (normalised to account for variation in sample site and degree of biofouling). Examination of several thousand embryos generated a clear impression of normal embryonic morphology. Abnormal development was recognised in late stage embryos by an absence of specific organs (e.g. arms or eyes), or by distortions in character shape, size or position relative to the individual (e.g. inversion of the mantle). Abnormalities were arbitrarily allocated into 1 of 5 categories: defects in external yolk sac morphology, pronounced reduction in embryo size, mantle deformities, eye deformities and arm deformities. Brief visual descriptions of developmental abnormalities were recorded per embryo, and illustrated examples of each category are provided (Fig. 3). Incidence of abnormally developed embryos was calculated per egg strand as a function of sample date (normalised to account for variation in sample site and degree of biofouling). Frequency occurrence of dead embryos, identified by arrested development, was similarly calculated. Dead embryos were scored exclusively as mortalities, i.e. regardless of any developmental abnormality. A total of 84 egg masses yielding 481 egg strands and 2649 embryos were examined during the spawning season.

Information on sea-bottom temperature (SBT in °C) was collected to provide background information on ambient conditions during the sampling period. Laboratory rearing of squid eggs (Hanlon 1990) indicates that controlled temperature changes should not exceed 1°C d⁻¹ (equivalent to ∆0.04°C h⁻¹). Hourly SBT was measured in situ during this study in order to provide detailed assessment of natural temperature fluctuations. SBT was measured via a 32K StowAway 'TidbiT' temperature datalogger secured to the seafloor (<4 m deep) at Site A, 1 mo prior to first sampling.

Frequency analyses of data revealed both normal and skewed data distributions. For example, incidence of developmental abnormality per egg strand was skewed on 3 of 6 sample dates (Ryan-Joiner p < 0.01; kurtosis 4.68 to 19.87; skew 2.19 to 4.11). Data transformation was prohibited by the high frequency of zero values within the data set; therefore, non-parametric techniques were employed. Variation in the relationship between egg position and developmental abnormality was investigated by converting number of abnormalities per position into percentage abnormalities per position on each sample date. Percentage abnormality per nth egg position was calculated by analysis of strands containing ≥n eggs. However, as only 15% of egg strands examined contained >6 eggs, results of percentage abnormality at Positions 7, 8 and 9 should be interpreted with caution.

RESULTS

Highly significant variation was observed between sample dates in frequency of unfertilised eggs (Kruskal-Wallis: \(H_b = 20.62, p = 0.001 \)). Unfertilised eggs were only found during late October and early November and represented a mean 2.12 ± 1.25% SE and 0.58 ± 0.58% SE of eggs per strand respectively (Fig. 4). Frequency of abnormality per strand differed significantly among sample dates (Kruskal-Wallis: \(H_b = 28.48, p < \)).
0.001), with mean incidence ranging between 8.35 ± 1.86% SE and 0.92 ± 0.41% SE eggs per strand in late November and late December respectively (Fig. 4). Defects in external yolk sac morphology accounted for 46.3% of all abnormalities (Table 1) and were characterised by fissures within the yolk, pinching of the yolk, or convolution of the yolk (Fig. 3A). These defects indicated abnormal development that would not progress beyond gastrulation (Stage 12). Pronounced reduction of embryonic size, recognised on the basis of comparison with embryos of equivalent developmental stage, accounted for 27.8% of abnormalities (Table 1). Reductions in embryonic size were often accompanied by a larger than normal yolk sac (Fig. 3B), or by separation

Fig. 3. Sepioteuthis australis. Illustrations of morphological abnormalities observed in field-sampled eggs. (A) Eggs at gastrulation (Stage 12, after Segawa et al. 1988); (B) and (C) are late stage embryos (Stage 29, after Segawa et al. 1988)
of the sac from the developing embryo. Mantle deformities, typified by mantle detachment (Fig. 3C), accounted for 13.0% of abnormalities (Table 1). Abnormalities in eye development, largely characterised by dimorphism (Fig. 3C), accounted for 11.1% of abnormalities (Table 1). Only 1.9% of abnormalities related to errors in arm development (Table 1); these were typified by stunting or complete inhibition of arm development (Fig. 3C). Finally, mean incidence of embryonic mortality per strand varied significantly during the spawning season (Kruskal-Wallis: $H_5 = 18.29, p < 0.003$). Frequency of mortality varied between 1.40 ± 0.68% SE eggs per strand in late October and 11.61 ± 3.23% SE eggs per strand in early January (Fig. 4). No dead embryos were found during early November.

Incidence of developmental abnormality varied significantly with egg position when measured over the entire spawning season (Fig. 5; Kruskal-Wallis: $H_8 = 30.54, p < 0.001$). Mean percentage abnormality at each egg position decreased from 20.94% at Position 1 (fixed/proximal end) to 1.67% at Position 7 and 0.00% at Positions 8 and 9 (free/distal end). The association between frequency of abnormality and egg position strengthened as the spawning season progressed. Egg strands collected in late October and early November were characterised by a relatively even distribution of abnormalities across egg Positions 1 to 7 (Fig. 6). Frequency of abnormality was not associated with egg position during this initial phase of spawning. Correlation between developmental abnormality and egg position was first evident during late November: at this time 64% of abnormalities were located within egg Positions 1, 2 and 3 (Fig. 6). By early December 49% of abnormalities were at egg Positions 1 and 2; this decreased to 34% in late December. Towards the end of the spawning season (early January), 39% of abnormalities were located at egg Position 1 (Fig. 6).

Inter-site variation in frequency of abnormality was investigated by comparing data from unfouled egg strands collected at Sites A, B, and C during early December. No egg strands contained unfertilised eggs at this time. Mean percentage mortality per strand was not significantly associated with sample site (Kruskal-Wallis: $H_2 = 2.38, p = 0.30$). Mean values ranged from

<table>
<thead>
<tr>
<th>Date (dd/mm/yy)</th>
<th>No. of eggs sampled</th>
<th>External yolk sac deformity</th>
<th>Reduction in embryo size</th>
<th>Mantle deformity</th>
<th>Eye deformity</th>
<th>Arm deformity</th>
<th>Total no. of abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/10/00</td>
<td>241</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>08/11/00</td>
<td>133</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>22/11/00</td>
<td>385</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>06/12/00</td>
<td>519</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>21/12/00</td>
<td>502</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>08/01/00</td>
<td>134</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>1914</td>
<td>25</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>54</td>
</tr>
</tbody>
</table>
In contrast, mean percentage abnormality per strand was strongly correlated with sample site (Kruskal-Wallis: \(H^2 = 6.94, p < 0.05 \)). Mean values ranged from 7.50 ± 4.79% SE at Site B to 0.52 ± 0.52% SE at Site C. On this basis, Site B was characterised by a comparatively high incidence of abnormally developed embryos at that time.

Biofouled eggs strands were characterised by a comparatively lower incidence of both unfertilised and dead eggs: unfertilised eggs were never found in fouled egg strands but accounted for a mean 0.80 ± 0.46% SE eggs in unfouled egg strands. No significant correlation was found between biofouling and frequency of developmental abnormality: mean values ranged from 3.53 ± 1.00% SE eggs per strand in unfouled strands to 2.04 ± 0.69% SE eggs per strand in fouled strands (2 sample t-test: \(t_{144} = 1.20, p = 0.23 \)). Highly significant correlation was noted between biofouling and incidence of mortality: unfouled egg strands contained a mean 11.31 ± 2.49% SE mortality compared to a mean 2.14 ± 0.94% SE in fouled egg strands (2 sample t-test: \(t_{97} = 3.45, p < 0.001 \)).

Mean daily SBT (°C) increased steadily during the spawning season from 12.9°C in late September to 18.9°C in mid-December (Table 2). Daily fluctuations in SBT typically measured between 1 and 2°C. Fluctuations >2°C d\(^{-1}\) were most prevalent during early and mid-October and were noted on 24% of days during this period (Table 2). Hourly changes in SBT > 0.5 and >0.25°C were also most common during early and mid-October; these changes occurred ≤2 and ≤6 times per 24 h respectively (Table 2).

DISCUSSION

The results of this study suggest that non-viable eggs and embryos account for ~11% of eggs per strand in a shallow-spawning *Sepioteuthis australis* population. The incidence of non-viable eggs and embryos varied significantly during the spawning season and ranged between 3 and 19% of eggs per strand. Unfertilised eggs were only found during the first month of spawning and occurred at relatively low frequencies (≤2% eggs per strand). In contrast, egg mortality and devel-

Fig. 6. *Sepioteuthis australis.* Total frequency of embryonic abnormality per egg position on each sample date (Nstrands = 481, Neggs = 2649)

Table 2. *Sepioteuthis australis.* Temporal changes in sea-bottom temperature (SBT, °C) during a spring/summer spawning season. Relatively pronounced daily and hourly changes in SBT (>2.0°C d\(^{-1}\) and >0.50°C h\(^{-1}\)) were most frequent in the 2 wk between 8 and 24 October 2000 (in bold)

<table>
<thead>
<tr>
<th>Period</th>
<th>Mean daily SBT (°C)</th>
<th>Daily range in SBT > 2.0°C (%)</th>
<th>Daily range in SBT > 1.0°C (%)</th>
<th>No. of ∆SBT > 0.50°C (h(^{-1}))</th>
<th>No. of ∆SBT > 0.25°C (h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/09/00 – 07/10/00</td>
<td>12.90 ± 0.16 SE</td>
<td>0.0</td>
<td>84.6</td>
<td>4 (max. 2 per 24 h)</td>
<td>36 (max. 6 per 24 h)</td>
</tr>
<tr>
<td>08/10/00 – 24/10/00</td>
<td>13.45 ± 0.16 SE</td>
<td>23.5</td>
<td>47.1</td>
<td>6 (max. 2 per 24 h)</td>
<td>47 (max. 6 per 24 h)</td>
</tr>
<tr>
<td>25/19/00 – 07/11/00</td>
<td>14.19 ± 0.17 SE</td>
<td>0.0</td>
<td>71.4</td>
<td>2 (max. 1 per 24 h)</td>
<td>36 (max. 8 per 24 h)</td>
</tr>
<tr>
<td>08/11/00 – 21/11/00</td>
<td>15.69 ± 0.14 SE</td>
<td>7.1</td>
<td>42.9</td>
<td>4 (max. 3 per 24 h)</td>
<td>16 (max. 4 per 24 h)</td>
</tr>
<tr>
<td>22/11/00 – 05/12/00</td>
<td>18.06 ± 0.14 SE</td>
<td>7.1</td>
<td>85.7</td>
<td>5 (max. 3 per 24 h)</td>
<td>46 (max. 7 per 24 h)</td>
</tr>
<tr>
<td>06/12/00 – 20/12/00</td>
<td>18.93 ± 0.11 SE</td>
<td>6.7</td>
<td>66.7</td>
<td>1 (max. 1 per 24 h)</td>
<td>31 (max. 7 per 24 h)</td>
</tr>
<tr>
<td>21/12/00 – 07/01/01</td>
<td>17.70 ± 0.23 SE</td>
<td>5.9</td>
<td>64.7</td>
<td>1 (max. 1 per 24 h)</td>
<td>31 (max. 4 per 24 h)</td>
</tr>
</tbody>
</table>
Developmental abnormalities were noted throughout the entire season with frequency of mortality approxi-
mately double that of abnormality. Defects in external
yolk-sac morphology accounted for nearly 50% of all
abnormalities. Illustrated reductions in embryo size
and deformities of the mantle, arms and eyes are con-
sistent with developmental abnormalities reported in
other squid species (Todarodes pacificus: Sakurai et al.
1996; Loligo forbesi: Murray 1999; Loligo vulgaris rey-
naudii: Oosthuizen et al. 2002a). The intra-season vari-
ation in frequency of abnormalities within field-sampled
S. australis eggs may reflect changes in (1) environ-
mental conditions, (2) egg mass size and/or (3) levels of
biological fouling.

Cephalopod development is intrinsically linked to
water temperature (e.g. Hamabe 1960, Arnold 1965,
Boletzky 1974, 1979). Incubation of eggs at tempera-
tures outside the optimal species range results in
increased levels of mortality and abnormality (O’Dor et
al. 1982, Sakurai et al. 1996, Gowland et al. 2002, Oost-
uhizen et al. 2002b). Laboratory rearing of squid eggs
indicates that controlled temperature changes should
measure ≤1°C d⁻¹ which equates to ≤0.04°C h⁻¹ (Han-
lon 1990). Experimental rearing of Loligo vulgaris rey-
naudii indicates that exposure to fluctuating tempera-
tures (±3 to 9°C) elevates frequency of developmental
abnormality to levels exceeding those associated with
eggs maintained at constant temperatures (Oosthuizen
et al. 2002b). This study additionally suggests that
upward fluctuations in developmental temperature
(+4.3°C h⁻¹) are comparatively more deleterious than
downward fluctuations in developmental tempera-
ture (−5.5°C h⁻¹). The results of the present study on Sepi-
teuthis australis indicate a November peak in fre-
quency of developmental abnormality (19% eggs per
strand). This peak may reflect the relatively pro-
nounced fluctuations in SBT (Δ >2°C d⁻¹) measured
during the preceding 8 wk of egg development. Adap-
tation of Segawa’s (1987) equation relating tempera-
ture and duration of embryonic phase in S. lessoniana
generates an approximate oviposition date of 9 Octo-
ber for S. australis eggs collected on 22 November. As
Segawa’s equation assumes constant thermal condi-
tions, oviposition date was tentatively estimated on the
basis of mean field temperature during the preceding
8 wk. This estimate suggests that the S. australis eggs
classified by greatest frequency of developmental
abnormality were progressing through early develop-
mental stages when temperature fluctuations of
>2°C d⁻¹ were most common. Fluctuations >2°C d⁻¹
occurred on 24% of days between 8 and 24 October,
compared to a maximum 7.1% of days in any other 2
wk period. Experimental rearing of loliginid eggs
indicates maximal thermal sensitivity during the early
stages of development (S. lessoniana: Segawa 1995;
L. v. reynaudii: Oosthuizen et al. 2002b). This coinci-
dence of heightened embryonic sensitivity and rela-
tively pronounced thermal variation in the field may
account for the peak in developmental abnormalities
during late November. It should be noted that down-
ward fluctuations in temperature accounted for the
majority of fluctuations measured during this period
(57% Δ >0.25°C h⁻¹; 65% Δ >0.50°C h⁻¹).

With the exception of this November peak, frequency
of developmental abnormality increased steadily dur-
ing the final 8 wk of the spring/summer spawning sea-
on. Analysis of environmental data suggests that am-
bient conditions varied in a similar manner during this
period, i.e. SBT increased steadily and fluctuations
were of comparable magnitude. The progressive in-
crease in incidence of developmental abnormalities
must therefore parallel another change in conditions.
The relationship between incidence of developmental
abnormality and within-strand egg position appeared
to strengthen temporally. Developmental abnormalities
became increasingly clustered towards the fixed/prox-
imal end of egg strands as the spawning season pro-
gressed; this clustering may reflect increased hypoxia
within egg masses. Hypoxic conditions have been
noted within the centres of amphibian (e.g. Seymour
1995) and molluscan (e.g. Strathmann & Strathmann
1995) egg masses. Low oxygen conditions are associ-
ated with retardation of development and/or egg mor-
tality (e.g. Baker & Mann 1994, Mills & Barnhart 1999,
Woods 1999). Hypoxia has previously been linked to
developmental abnormalities in loliginid squid egg
masses held in the laboratory. Arnold (1990) states that
the centre of a Loligo spp. egg mass ‘tends to become
fairly anaerobic’ and that development becomes ‘re-
tarded or abnormal’ if egg strands are not separated
out. Loliginid egg-laying behaviour typically involves
the deposition of new strands onto the periphery of ex-
tant egg masses (McGowan 1954, Arnold 1962). Dis-
crete Sepioteuthis australis egg masses may contain
>600 egg strands (Moltschaniwskyj & Piel 2002) and
large mass size is likely to restrict water flow therefore
reducing aeration. Whilst developmental abnormalities
in S. australis eggs were distributed relatively evenly
across egg positions during the first month of spawning,
39% of all abnormalities were located at the most prox-
imal egg position by the end of the season. This pro-
gressive clustering may reflect congruent increases in
egg mass and hypoxic conditions. Proximal clustering
of developmental abnormalities has been observed in
field-sampled Loligo forbesi egg strands (Murray 1999).
Use of oxygen probes during subsequent field assess-
ments of cephalopod eggs will permit direct testing of
the hypoxia hypothesis.

Late stage Sepioteuthis australis eggs strands typi-
cally support epiphytic growth. A previous study sug-
uggests that biofouling may be beneficial to egg development in this species, as fouled egg strands display comparatively reduced levels of egg mortality (Steer et al. 2002). Photosynthesis of endogenous algae has been positively associated with development of amphibian eggs (Pinder & Friet 1994) and molluscan eggs (Cohen & Strathmann 1996). The results of the present study confirm the existence of a relationship between biofouling and reduced egg mortality in *S. australis*. A similar relationship is revealed between biofouling and reduced incidence of unfertilised eggs. In apparent contrast, no correlation exists between biofouling and incidence of morphological abnormality. Frequency of abnormality did not differ significantly between fouled and unfouled egg strands. If biofouling conferred significant benefit during egg development in *S. australis*, a continuum of effect might be expected, i.e. suppression of abnormality levels in tandem with suppression of mortality levels. As no such continuum was identified during the present study, an alternative explanation is necessary. Reversal of cause and effect offers one possibility, i.e. good quality *S. australis* eggs may support epiphytic growth rather than epiphytic growth ensuring good quality *S. australis* eggs. If epiphytic colonisation occurs exclusively upon capsules containing live fertilised eggs, the relationship between biofouling and reduced egg mortality may be entirely incidental. By this rationale, correlation may simply reflect an absence of epiphytic growth on dead or unfertilized egg capsules and not a positive relationship between egg development and biofouling. Comparable levels of morphological abnormality in fouled and unfouled egg strands provide support for this hypothesis. Indeed, cephalopod culture experiments suggest ‘unsatisfactory hatching due to the attachment of great quantities of diatoms or green algae’ (Choe 1966). Further investigation is required to clarify the relationship between development and epiphytic colonisation of *S. australis* eggs.

This study provides *in situ* assessment of development in a commercially important cephalopod population. Rates of embryonic abnormality (~11%) are comparable with laboratory rates reported for other loliginids reared under natural thermal conditions: 5 to 10% in *Loligo vulgaris reynaudii* (Oosthuizen et al. 2002b) and 7 to 8% in *L. forbesi* (Gowland et al. 2002). The results of the present study suggest that rates of embryonic abnormality primarily reflect environmental conditions and consequently vary with spawning date and site. Rates may additionally reflect the quality of yolk provision. For example, deficiencies in dietary phospholipids can induce developmental abnormalities in cultured fish larvae (e.g. Kanazawa et al. 1981, Geurden et al. 1995). Irrespective of cause, quantification of embryonic abnormality within natural populations may generate valuable information on environmental conditions and population dynamics. A previous study of embryogenesis in sea urchins concludes that quantification of embryonic abnormalities has potential as a ‘rapid and sensitive model bioassay’ for monitoring marine pollution (*Lytechinus variegatus*; Bottger & McClintock 2001). *In situ* investigation of embryonic development in amphipods suggests that rates of abnormality are more toxicant-sensitive than measures of fecundity, reproductive success or developmental stage (Sundelin & Eriksson 1998). Assessment of embryonic abnormality in coastal spawning cephalopods may provide an indirect measure of environmental quality, and additionally, assessment of embryonic success in commercially exploited cephalopod populations may assist in fisheries management.

Acknowledgements. Thanks to G. Pecl, S. Wilcox and S. Talbot for their help with field work. F.C.G. was supported by a studentship from the Biotechnology and Biological Sciences Research Council and by a travel grant from The British Society of Developmental Biology. M.A.S. was supported by a University of Tasmania Postgraduate Scholarship. This work was supported by a Fisheries Research Development Corporation grant (2000/121) awarded to N.A.M.

LITERATURE CITED

Bottger SA, McClintock JB (2001) The effects of organic and inorganic phosphates on fertilization and early development in the sea urchin *Lytechinus variegatus* (Echino-
Gowland et al.: Developmental abnormalities in field-sampled squid eggs

141

McCowan JA (1954) Observations on the sexual behaviour and spawning of the squid Loligo opalescens at La Jolla, California. Calif Fish Game 40:47–54
Murray FC (1999) Developmental abnormalities in the cephalopod embryo. Bsc honsthesis, University of Aberdeen

Submitted: May 15, 2002; Accepted: June 29, 2002
Proofs received from author(s): October 28, 2002

Editorial responsibility: John Lawrence (Contributing Editor), Tampa, Florida, USA