The reproductive biology and movement patterns of the draughtboard shark, *(Cephaloscyllium laticeps)*: implications for bycatch management

by

Cynthia Andrea Awruch

Submitted in fulfilment of requirements for the Degree of

Doctor of Philosophy

January 2007

Tasmanian Aquaculture and Fisheries Institute

School of Aquaculture

University of Tasmania, Australia
Draughtboard shark, *Cephaloscyllium laticeps*
I hereby declare that this thesis is my own work except where due
acknowledgement is given, and that the material presented here has not been submitted
at another university for the award of any other degree diploma.

This thesis may be made available for loan and limited copying in accordance with
the Copyright Act 1968

Cynthia Andrea Awruch

January 2007
ABSTRACT

The draughtboard shark (*Cephaloscyllium laticeps*) is the most common shark on temperate reefs in southeastern Australia. In order to implement adequate management plans its reproductive biology and movement patterns were studied.

Females developed a single external-type ovary with a maximum follicle diameter of 35 mm. Vitellogenesis commenced at 10 mm follicle diameter. The male reproductive tract consisted of paired testis with spermatocysts undergoing diametric development.

The hormones testosterone, 17-ß estradiol, progesterone and 11-ketotestosterone (males only) were examined to determine their role in reproduction. Testosterone and estradiol showed major changes during follicle development. Estradiol increased as the follicle developed before declining as the follicle reached maturity. Testosterone remained low during the first stages of follicular development and increased as the follicle reached maturity. Progesterone showed a peak just prior to ovulation. Testosterone was the only hormone that varied with maturity in males and no levels of 11-ketotestosterone were detected.

Females were able to store sperm for at least 15 months and eggs were laid in pairs at monthly intervals. Juveniles hatched after 12 months.

The size at maturity and seasonality of reproduction were estimated using reproductive parameters obtained from dissected animals and from steroid hormones. The sizes at onset of sexual maturity by both methods were similar. Females laid eggs throughout the year with a peak in deposition between January and June. Elevated values of testosterone and progesterone coincide with this period of egg deposition. Males showed no seasonal pattern in reproduction although both testosterone and the amount of sperm in the seminal vesicle were marginally higher in the first semester of the year.

Movement studies were undertaken using conventional and acoustic tagging. The area of study included a marine reserve and the adjacent bays of southeast Tasmania. Both
methods demonstrate that the majority of sharks remained in the same region in which they were tagged, although a few sharks moved large distances. Sharks were active throughout the day and night with peak activity during dawn and dusk. This species could remain stationary on the bottom for periods up to five days. No correlation was found between activity and lunar patterns and both sexes showed similar activity patterns.

This study has provided the first information on reproduction and movement of draughtboard shark and demonstrated the potential for hormones to provide reproductive information necessary for management without the need to sacrifice the shark.
I would like to start these acknowledgments by saying THANK YOU to my supervisors: Ned Pankhurst, John Stevens and Stewart Frusher. I will be forever grateful to them. I could not have done this study without their constant support; it has been a great pleasure and honour to work side by side with you all. I would specially like to say thanks to Ned for giving me the opportunity to come to Australia to complete this degree, for his patience and time in the laboratory, for discussing ideas and opening my mind. To John, for his support and advice since the very beginning and for showing me how to be a good scientist, but also, and more importantly, how to be a good person in science. And finally to Stewart, for absolutely everything, for spending endless hours with me helping with everything, discussing every detail, making me think, and for being always patience and open to see me.

I would like to extent my thanks to Chris Carter, for his understanding and help.

Thanks to Stewart’s family for accepting me in their house and for showing me such kindness.

To the Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, and the School of Aquaculture for their funding support.

I could not have done this research without the help of many commercial and recreational fishermen that collected samples and gave me tag returns. I would particularly like to thank Neville Perryman, for collecting so many sharks and for being so helpful. Bryan Hughes offered me great help by sharing his insight and knowledge when studying the gestation period of the sharks.

To all the rock lobster section at Marine Research Laboratories, especially, Shane Fava, Craig McKinnon, Pip Cohen and Robbie Kilpatrick for their help on land and aboard the “Challenger”. A big thanks to Caleb Gardner for his kindness and constant support.

I am very thankful to all the students at Marine Research Laboratories and members of the endocrine laboratory at the School of Aquaculture, Peter Lee, Hannah Woolcott and Quinn Fitzgibbon. Thanks to all of you for being always so helpful and for creating a fun research environment. Special thanks to Tobias Probst, for his constant help and for making me laugh so much! Matias Braccini and Javier Trovar-Avila, thanks for always being there and for our time together, it has been great have your friendship and your scientific advice. To Sarah Irvine for her constant support, for the fun at the conference, and for always cheering me up; to Michelle Treloar, for her constant encouragement, and to Cass Hunter for being such amazing friend through all these years. I feel so lucky for the times that we have shared.

Jayson Semmens, Colin Simperdorfer and Michelle Heupel gave me helpful advice in the analysis of the tracking data. Thanks also to Colin and Michelle for their hospitality when I stayed in U.S.A. Julian Harrington offered me invaluable assistance in the use of the GIS software. Malcolm Hadden, Phil Ziegler, Al Hirst, Barry Bruce and Hugh Pederson all assisted with data analysis, for this I thank you.
I could not have come to Australia without the invaluable help of my very good friends Cecilia Arighi and Sergio Schuchner. Without them, this PhD would be nothing but a dream.

My stay in Australia has been a wonderful experience, I have come to know amazing people and I had the chance to make very good friends for life, thanks to all of you. How can I express my gratitude to my friends Louise Ward and Justin Ho? I will be forever grateful for their constant support, for always being there for me, and for making my life so much easier and happier in a new country.

To my Argentinean friends, Lali, Marce and Ferchu, for, as usual, being such a good and important friends and for keeping our friendship without seeing me for all these years.

To my uncle Juan, my aunty Raquel, my cousins, and specially my brother Alejandro, without your support and love I would not have done it, thank you.
TABLE OF CONTENTS

GENERAL INTRODUCTION---9

CHAPTER ONE: 15

CHAPTER TWO: 18

 2.1 INTRODUCTION 19
 2.2 MATERIAL AND METHODS 25
 2.2.1 Source of samples and data collection 25
 2.2.2 Steroid hormone measurement 28
 2.2.3 Classification of reproductive stage of the sharks 29
 2.2.4 Data Analysis 34
 2.3 RESULTS 35
 2.3.1 Reproductive development 35
 2.3.2 Embryo development 44
 2.3.3 Endocrine correlates 46
 2.3.4 Seasonality of reproduction 51
 2.4 DISCUSSION 57
 Females 57
 Males 62
 Seasonality of reproduction and egg laying behaviour 65
 Incubation period 69

CHAPTER THREE: 74

 3.1 INTRODUCTION 75
 3.2 MATERIALS AND METHODS 78
 3.2.1 Source of samples and data collection 78
 3.3 RESULTS 83
 3.3.1 Size at maturity of all sharks dissected 83
 3.3.2 Sharks of known maturity stage (blood taken before dissected) 85
 3.3.3 Sharks of unknown maturity 92
 3.4 DISCUSSION 98

CHAPTER FOUR: 102

 4.1 INTRODUCTION 103
 4.2 MATERIAL AND METHODS 106
 4.2.1 Acoustic tagging 106
 4.2.2 Conventional tagging 115
 4.3 RESULTS 118
 4.3.1 Acoustic tagging 118
 4.3.2 Conventional tagging 140
 4.4 DISCUSSION 146

GENERAL CONCLUSIONS---153

REFERENCES 159