Open Access Repository

Chemical abundances in LMC stellar populations I. The inner disk sample


Downloads per month over past year

Pompeia, L, Hill, V, Spite, M, Cole, AA, Primas, F, Romaniello, M, Pasquini, L, Cioni, MR and Smecker Hane, T 2008 , 'Chemical abundances in LMC stellar populations I. The inner disk sample' , Astronomy and Astrophysics, vol. 480, no. 2 , pp. 379-395 , doi: 10.1051/0004-6361:20064854.

2008.17-8283.pdf | Download (1MB)
Available under University of Tasmania Standard License.


We have used FLAMES (the Fibre Large Array Multi Element Spectrograph) at the VLT-UT2 telescope to obtain spectra of a large sample of red giant stars from the inner disk of the LMC, ~2 kpc from the center of the galaxy. We investigate the chemical abundances of key elements to understand the star formation and evolution of the LMC disk: heavy and light [ s-process/Fe] and [ α/Fe] give constraints on the time scales of formation of the stellar population. Cu, Na, Sc, and the iron-peak elements are also studied aiming to better understand the build up of the elements of this population and the origin of these elements. We aim to provide a more complete picture of the LMC's evolution by compiling a large sample of field star abundances. Methods: LTE abundances were derived using line spectrum synthesis or equivalent width analysis. We used OSMARCS model atmospheres and an updated line list. Results: We find that the alpha-elements Ca, Si, and Ti show lower [X/Fe] ratios than Galactic stars at the same [Fe/H], with most [Ca/Fe] being subsolar. The [O/Fe] and [Mg/Fe] ratios are slightly deficient, with Mg showing some overlap with the Galactic distribution, while Sc and Na follow the underabundant behavior of Ca, with subsolar distributions. For the light s-process elements Y and Zr, we find underabundant values compared to their Galactic counterparts. The [La/Fe] ratios are slightly overabundant relative to the galactic pattern showing low scatter, while the [Ba/Fe] are enhanced, with a slight increasing trend for metallicities [ Fe/H] > -1 dex. The [ heavy-s/light-s] ratios are high, showing a slow, increasing trend with metallicity. We were surprised to find an offset for three of the iron-peak elements. We found an offset for the [iron-peak/Fe] ratios of Ni, Cr, and Co, with an underabundant pattern and subsolar values, while Vanadium ratios track the solar value. Copper shows very low abundances in our sample for all metallicities, compatible with those of the Galaxy only for the most metal-poor stars. The overall chemical distributions of this LMC sample indicates a slower star formation history relative to that of the solar neighborhood, with a higher contribution from type Ia supernovae relative to type II supernovae.

Item Type: Article
Authors/Creators:Pompeia, L and Hill, V and Spite, M and Cole, AA and Primas, F and Romaniello, M and Pasquini, L and Cioni, MR and Smecker Hane, T
Keywords: stars: abundances, galaxies: Magellanic, Clouds, Galaxy: abundances, galaxies: evolution
Journal or Publication Title: Astronomy and Astrophysics
ISSN: 0004-6361
DOI / ID Number: 10.1051/0004-6361:20064854
Additional Information:

© ESO 2008

Related URLs:
Item Statistics: View statistics for this item

Actions (login required)

Item Control Page Item Control Page