4 Datasets for object detection

A good generic object detection method will be effective on a variety of datasets. Three image collections were used in testing the object detection algorithms in this thesis. For the first (face detection) an existing cascade was used, so the only dataset required was a collection of test images distinct from its training images. For the other sets (fish and seahorse detection), cascades had to be trained before they were tested. This required sufficient images to create separate training and testing sets.

It should be noted that both marine animal image sets contain multiple animals per image, and therefore have more positive training samples than images. Also, section 2.6.3 explains how the Haar Classifier Cascade training process searches through its negative training images at different positions and scales to create negative training samples for each stage. Each negative training image therefore offers a large number of negative training samples.
4.1 Faces

Face detection is a common application for object detection algorithms, so cascades already exist for detecting faces, and datasets already exist for testing them. A commonly used image set is the MIT/CMU frontal face testing dataset (Rowley et al., 2003). These images were assembled to test a neural network-based face detector (Rowley et al., 1998a), but are suitable for testing any frontal face detection algorithm. All face detection testing in this thesis used MIT/CMU test sets A, B, and C. These contain 130 images, including those in fig. 4.1, which between them contain 511 faces. Existing annotations giving the coordinates of both eyes and the left, centre and right part of the mouth are provided. OpenCV requires rectangular annotations, which were from the eye and mouth points as follows:

\[
\text{eye}_{\text{centre}} = \frac{\text{eye}_{\text{left}} + \text{eye}_{\text{right}}}{2}
\]

\[
\text{face}_{\text{centre}} = \frac{\text{eye}_{\text{centre}} + \text{mouth}_{\text{centre}}}{2}
\]

\[
\text{face}_{\text{width}} = \sqrt{(\text{eye}_{\text{left}} - \text{eye}_{\text{right}})^2 + (\text{eye}_{\text{left}} - \text{eye}_{\text{right}})^2}
\]

\[
\text{face}_{\text{height}} = \sqrt{(\text{eye}_{\text{centre}} - \text{mouth}_{\text{centre}})^2 + (\text{eye}_{\text{centre}} - \text{mouth}_{\text{centre}})^2}
\]

\[
\text{face}_{\text{size}} = 1.2 \times (\text{face}_{\text{width}} + \text{face}_{\text{height}})
\]

\[
\text{face}_{x1} = \text{face}_{\text{centre}_{x}} - \frac{\text{face}_{\text{size}}}{2}
\]

\[
\text{face}_{x2} = \text{face}_{\text{centre}_{x}} + \frac{\text{face}_{\text{size}}}{2}
\]

\[
\text{face}_{y1} = \text{face}_{\text{centre}_{y}} - \frac{\text{face}_{\text{size}}}{2}
\]

\[
\text{face}_{y2} = \text{face}_{\text{centre}_{y}} + \frac{\text{face}_{\text{size}}}{2}
\]

The four example images with resulting annotation rectangles are shown in fig. 4.2.
Chapter 4 Datasets for object detection

Figure 4.1: Example face images

Figure 4.2: Example face images, annotated with testing positives
4.1.1 Cascade selection

OpenCV is provided with four face detectors trained by Lienhart et al. (Lienhart et al., 2003a): three cascades and a tree (Lienhart et al., 2003b). These were each run on the MIT/CMU faces; the resulting ROC curves are plotted in fig. 4.3. The best overall detector was haarcascade_frontalface_alt2, so it was used in the chapter 6 face detection experiments.

Figure 4.3: ROC curves for face detection by the OpenCV detectors
4.2 Fish

The fish detection problem was part of a project in automated salmon farm monitoring. The intention is to determine average fish size by detecting a sample of unoccluded fish in each image and matching a shape model to each fish. For this purpose, 235 images of salmon in a fish farm cage were provided by AQ1 Systems Pty Ltd; fig. 4.4 shows two examples. This thesis is an extension of previous work on these images (Williams et al., 2006). In general, the fish cage environment is less varied than many object detection environments, but the underwater images have poor contrast and are frequently crowded (Lines et al., 2001), which has sometimes led to the use of sonar and laser measurements to supplement image data for fish detection (Mueller et al., 2006). There are also many fish to detect in each image, in comparison to work such as (Zhou & Clark, 2006), where fish are detected in a natural lake environment, but each image is assumed to contain at most one fish.

4.2.1 Required and optional annotations

Many of the fish were faint, blurred or occluded. Some were hard to count even by a human annotator. To train classifiers to detect them would confuse the trainer as it tried to find features which differentiated between blurry grey net and blurry grey fish. Therefore, only mostly (90%–100%) visible fish were used as positive training samples.

During classification, an object detector should only be expected to find objects comparable to those in its training set. For this reason, the testing annotations it is expected to find only contain mostly-visible fish. However, since detections on the remaining fish are possible, and should not be counted as false positives, a separate set of annotations was created with every fish in the image.

In total, the 119 testing images were randomly selected from the 235 provided and annotated with 597 ‘mostly’ (90%–100%) visible fish, and 1,759 ‘partially’ (50%–90%) visible fish. If fish from the latter set were missed they were not counted as false negatives, but detections in their area were also not counted as false positives. Fig. 4.5(a) is an example of mostly-visible fish annotations, while fig. 4.5(b) shows all the fish annotated in the same image.
Chapter 4 Datasets for object detection

Figure 4.4: Example fish images

(a) Annotations for mostly-visible fish
(b) Annotations for all possible fish

Figure 4.5: Example fish image, annotated with testing positives
4.3 Seahorses

Another marine animal imaging application was to detect seahorses in tanks within an aquaculture research facility. The intention is to detect and track seahorses over time for behavioural analysis; ideally the seahorse poses will be found as well as their presence. For this purpose, a seahorse tank maintained by the University of Tasmania School of Aquaculture was filmed with a digital video camera. From this video, 263 still images were extracted, containing seahorses at two different scales. Examples of both are shown in fig. 4.6.

Seahorses are very flexible, so their shapes vary widely. Haar Classifier Cascades are trained on rectangular image regions, and patterns within those rectangles that are consistent across the positive samples. Even annotating entire seahorses with consistent rectangles would be difficult, and the cascade training process would have serious difficulty finding consistent features. For these reasons, the seahorses were broken into two segment detection problems: heads and bodies. Tails alone were still too flexible and lacking in features, so were ignored.

The segments were annotated by marking a line segment from the tip of the nose to the back of the head, and from there to the base of the stomach; fig. 4.7 shows where these points lie on a sideways-facing seahorse. The additional marker on the head segment shows which way is ‘up’; this is ignored during evaluation but is needed on the training images for the positive sample extraction described in section 5.2.2.

The 263 seahorse images were randomly divided into training and testing image sets. Within the 131 testing images, 823 complete (head and body segment visible, unoccluded and clearly connected) seahorses were marked. A second set was also created, adding 519 partially visible or incomplete seahorses. As with the fish described in section 4.2.1, segments and seahorses from the latter set were considered too hard to precisely detect; even definitively annotating them was difficult. If missed they were not counted as false negatives, but detections in their area were not counted as false positives. Fig. 4.8(a) shows examples of the ‘required’ seahorses in two images, while fig. 4.8(b) adds the partial seahorses and seahorse segments.
Figure 4.6: Example seahorse images

Figure 4.7: Seahorse head and body segment lines
Chapter 4 Datasets for object detection

(a) Annotations for complete, visible seahorses

(b) Annotations for all possible seahorses and seahorse parts

Figure 4.8: Example seahorse images, annotated with testing positives
4.3.1 Matching and merging seahorse segment detections

The neighbouring detection merging described in section 2.6.6 and the detection-to-annotation matching described in section 2.7.2 assume that all detections and annotations are in approximately the same orientation. This is not the case for seahorse segments, which could be oriented in any direction. A new formula was therefore created for both these situations. Given an annotation A and a detection D, it defines s_1 as the separation between the ‘top’ ends of A and D, and s_2 as the separation between the ‘bottom’ ends of A and D. These properties are illustrated in fig. 4.9.

D is considered to successfully detect A if:

$$s_1 + s_2 < \frac{A_{\text{length}} + D_{\text{length}}}{2}$$

The same formula is used when merging neighbouring detections. If two segment detections A and D are close enough to satisfy this formula, they are placed in the same set.

Figure 4.9: Values measured to compare a seahorse segment annotation A against a seahorse segment detection D
4.4 Conclusions

This chapter has described the three image sets used in this thesis. For the face dataset, it also explained how an existing face detection cascade was chosen. Chapter 5 will now describe how cascades were trained on the fish and seahorse sets. All three image sets and cascade sets will then be used in chapter 6, where Haar Classifier Cascade confidence measures are implemented and tested. The seahorse detections made in those two chapters are of the individual head and body segments; chapter 7 explains how to link those segments together to create whole seahorse detections.