The role of past sun exposure in Multiple Sclerosis

by

Ingrid A.F. van der Mei

Doctorandus (Master's)

Environmental Health Sciences, Human Movement Sciences

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Tasmania (September, 2004)
DECLARATION

This Thesis contains no material which has been accepted for any degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the Thesis, and to the best of my knowledge and belief no material previously published or written by another person, except where due acknowledgement is made in the text of the Thesis.

AUTHORITY OF ACCESS

This Thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968

SIGNATURE

Ingrid A.F. van der Mei
ABSTRACT

This epidemiological thesis firstly reviews the disease Multiple Sclerosis (MS): its history, pathology, clinical expression, and the current views on immunopathogenesis, aetiology and treatment. A separate review on ultraviolet radiation (UVR) and MS indicates that recent work in photoimmunology provides evidence that UVR can attenuate T helper 1 cell mediated processes through several mechanisms, and that epidemiological features of MS, such as the striking latitudinal gradient and seasonal variation in month of birth, MS onset and disease activity, are at least in part consistent with the hypothesis that UVR exposure may reduce the risk of MS. An ecological analysis was conducted as part of the PhD to demonstrate that regional variation in MS prevalence in the continent of Australia could be closely predicted by regional UVR levels, but analytical epidemiological studies are required to further investigate the UVR hypothesis.

The project central to this thesis was a population based case-control study on Multiple Sclerosis, conducted in Tasmania, Australia. It examined: (i) whether high past sun exposure was associated with a reduced risk of MS, (ii) whether sibship structure and past infections influenced the risk of MS and (iii) whether having had children and differences in prevalence and strength of MS risk factors between men and women could explain the sex difference in MS. Interviews were conducted with 136 cases with MS and 272 controls randomly drawn from the community and matched on sex and birth year. In one of the methodology chapters, a measure-retest and method comparison was conducted to examine aspects of reliability of the sun exposure measures used in the case-control study. A separate study on 104 healthy volunteers was carried out to examine the effect of seasonal variation and body hair on melanin density estimates based on skin reflectance.

The case-control study showed that higher past sun exposure, particularly during childhood and early adolescence, was associated with a reduced risk of MS, which is compatible with UVR having a protective role against MS. Having younger siblings, but not older siblings, was also associated with a reduced risk of MS, while having had glandular fever or having high antibody titers against the Epstein-Barr virus was associated with an increased risk of MS. Among women, a negative association was found between having had children and MS.

The finding of an inverse association between sun exposure during childhood and early adolescence and MS, if confirmed in future work, will have important public health implications.
ACKNOWLEDGEMENTS

In 1998, I joined the Menzies Centre for Population Health Research on a one year Australian-European Program Award to conduct epidemiological research and to bring back my newly acquired knowledge to the Netherlands. Rather than returning to the Netherlands, Professor Dwyer (director of the Menzies Centre) gave me the opportunity to conduct research on Multiple Sclerosis. There are a number of people I would like to acknowledge for their contributions they have made to the research I have conducted at the Menzies Centre.

Firstly, my supervisors, Professor Dwyer and Associate Professor Anne-Louise Ponsonby. Professor Dwyer has not only given me the opportunity to conduct my PhD at the Menzies Centre, but has also contributed greatly to my increased epidemiological knowledge as well as being central in providing feedback on statistical analyses, publications and thesis chapters.

Thanks must also go to my second supervisor, Anne-Louise Ponsonby. I am deeply grateful to Anne-Louise for the incredible amount of time devoted to supervising me. Her constructive criticism and eye for detail has resulted in high quality research, which is reflected in some excellent results in this thesis. I have benefited in areas such as research methods, publication writing and statistical analyses as well as the invaluable skill of improving efficiency when working part-time. With Anne-Louise located in Canberra, our contact was mostly by phone and email. This was refined to a fine art (with only the very occasional glitch in the system).

I would like to sincerely thank the research team involved in the fieldwork. High quality work can only be done with a high quality team. Trish Groom and Jane Pittaway conducted the interviews in a professional and personable manner. They made many evening phone calls and pursued every avenue to obtain high response rates. Thanks to Natasha Newton for her excellent data entry and both Natasha and Emma Stubbs for their administrative assistance. Tim Albion created a solid database for our complex work, which never failed.

Dr Rex Simmons from the Canberra Hospital was invaluable in the recruitment stages of our research. I observed how pleased people with MS were with his initial presentation as often they learned more about MS than they had in many years. Associate Professor Trevor Kilpatrick from the Walter and Eliza Hall Institute is one of the crucial instigators of research on MS in Tasmania, and has been essential in the diagnostic components of this study, together with Helmut Butzkueven and Bruce Taylor. I look forward to many more years of collaboration.

A special thanks to the biostatisticians who helped me, Leigh Blizzard and Jim Stankovich. Leigh was always available for meetings to discuss the statistical issues of the thesis and publications, and Jim was my helping hand for complicated STATA programming or for passing statistical advice in the corridor.

Finally, a huge thanks to Peter, for his patience and support, for all those Saturdays and evenings that we could not spend together or with Aaron, and… for all the tea and biscuits that were brought to me in order to complete this huge but satisfactory task.
TABLE OF CONTENTS

Declaration .. i
Authority of Access .. i
Abstract .. ii
Acknowledgements .. iii
Table of contents ... iv
Publications and presentations at scientific meetings ... ix
Honours received in the course of this work .. x
Abbreviations ... xi

Chapter 1 Introduction .. 1
 1.1 The current state of Multiple Sclerosis research ... 1
 1.2 Tasmania as a location to conduct epidemiological research on MS 1
 1.3 The project central to this thesis ... 2
 1.4 Main objectives of the project central to this thesis .. 2
 1.5 Outline of the thesis ... 2
 1.6 References .. 3

Chapter 2 A review of Multiple Sclerosis: History, diagnosis, clinical expression, pathogenesis, aetiology and treatment. .. 4
 2.1 Preface .. 4
 2.2 Introduction ... 4
 2.3 History .. 4
 2.4 Pathology .. 6
 2.5 Diagnostic criteria .. 6
 2.6 Clinical features ... 9
 2.7 Clinical factors influencing prognosis .. 10
 2.8 Immunopathogenesis .. 11
 2.9 MS morbidity in time, place and person ... 14
 2.10 Genes or gene regions influencing the development of MS 21
 2.11 Environmental factors influencing the development of MS 21
 2.12 Immunomodulatory treatments .. 24
 2.13 Recent developments and opportunities in epidemiological research on risk factors of MS .. 25
 2.14 Summary .. 26
 2.15 Postscript ... 26
 2.16 References ... 26

Chapter 3 Ultraviolet radiation and Multiple Sclerosis: Insights from epidemiological research .. 33
 3.1 Preface .. 33
 3.2 Introduction ... 33
 3.3 Effects of UVR on the immune system .. 34
 3.4 Studies on latitude, seasonal variation and MS ... 36
 3.4.1 Latitude ... 36
 3.4.2 Seasonal variation ... 36
 3.4.3 Conclusions from studies on latitude, seasonal variation and MS 40
 3.5 Analytical studies on UVR and MS ... 40
 3.6 Influence of genetic factors .. 41
 3.7 Conclusion .. 43
 3.8 Summary .. 43
Chapter 9 Sibship structure, past infections and risk of Multiple Sclerosis

9.1 Preface
9.2 Introduction

9.2.1 Family size and sibship structure
9.2.2 Specific infections/viruses

9.3 Methods

9.3.1 Subjects
9.3.2 Measurements
9.3.3 Data analysis

9.4 Results

9.4.1 Risk for measures of sibship structure
9.4.2 Risk for specific viral infections
9.4.3 Effect of confounders and disease-related factors on the relationship between younger sibling number and MS, and Epstein-Barr virus and MS
9.4.4 Do the effects of younger sibling number and Epstein-Barr virus operate independently from the effect of sun exposure?
9.4.5 Effect of younger sibling number and Epstein-Barr virus on age at onset among cases
9.4.6 Population attributable fraction

9.5 Discussion

9.5.1 Sibship structure
9.5.2 Epstein-Barr virus
9.5.3 Conclusions

9.6 Summary

9.7 Postscript

9.8 References

Chapter 10 The female excess in Multiple Sclerosis: (i) A comparison of prevalence and strength of MS risk factors between females and males; (ii) female specific factors

10.1 Preface
10.2 Introduction

10.2.1 Sex difference in MS
10.2.2 Effect of puberty development on MS risk
10.2.3 Effect of parity on MS risk
10.2.4 Effect of the use of oral contraceptives on MS risk
10.2.5 Effect of pregnancy on MS progression
10.2.6 Effect of breastfeeding on MS progression
10.2.7 Effect of menstrual cycle on MS progression
10.2.8 Effect of the use of oral contraceptives, hormone replacement therapy and menopause on MS progression
10.2.9 Possible mechanisms

10.3 Methods

10.3.1 Subjects
10.3.2 Measurements
PUBLICATIONS AND PRESENTATIONS AT SCIENTIFIC MEETINGS

Publications

Ponsonby A-L, van der Mei IAF, Dwyer T, Blizzard, BV Taylor, Kemp A, Simmons RD, Kilpatrick T. High infant contact during early life is associated with a reduced risk of multiple sclerosis. Manuscript submitted to JAMA.

van der Mei IAF, Blizzard L, Stankovich J, Ponsonby A-L, Dwyer T. Misclassification due to body hair and seasonal variation on melanin density estimates for skin type using spectrophotometry. J Photochem Photobiol 2002;68:45-52

Scientific presentations

van der Mei IAF, Ponsonby A-L. Current epidemiological research in Australia to assess the role of exposure of ultraviolet radiation and other environmental factors on Multiple Sclerosis. Scientific meeting on “Progress in Multiple Sclerosis Research”, Sydney, October 2002 (Oral presentation)

van der Mei IAF, Ponsonby A-L, Blizzard L, Dwyer T. Regional variation in Multiple Sclerosis prevalence in Australia and its association with ambient Ultraviolet radiation. Scientific meeting on ‘Progress in Multiple Sclerosis Research’, Melbourne, November 2000 (Oral presentation)

Honours received in the course of this work

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Attributable fraction</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene related peptide</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DSS</td>
<td>Disability Status Scale</td>
</tr>
<tr>
<td>EAE</td>
<td>experimental allergic encephalomyelitis</td>
</tr>
<tr>
<td>EA-R</td>
<td>early antigen complex (restricted), viral protein of Epstein-Barr virus</td>
</tr>
<tr>
<td>EA-D</td>
<td>early antigen complex (diffuse), viral protein of Epstein-Barr virus</td>
</tr>
<tr>
<td>EBNA</td>
<td>Epstein-Barr nuclear antigen, viral protein of Epstein-Barr virus</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>EDSS</td>
<td>Expanded Disability Status Scale</td>
</tr>
<tr>
<td>HHV</td>
<td>human herpes virus</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HSV</td>
<td>herpes simplex virus</td>
</tr>
<tr>
<td>ICC</td>
<td>intraclass correlation coefficient</td>
</tr>
<tr>
<td>IDDM</td>
<td>type 1 diabetes mellitus</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IM</td>
<td>infectious mononucleosis</td>
</tr>
<tr>
<td>INF</td>
<td>interferon</td>
</tr>
<tr>
<td>κ</td>
<td>kappa statistic</td>
</tr>
<tr>
<td>MBP</td>
<td>myelin basic protein</td>
</tr>
<tr>
<td>MED</td>
<td>mean erythemal dose</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MOG</td>
<td>myelin oligodendrocyte glycoprotein</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>ON</td>
<td>optic neuritis</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PLP</td>
<td>proteolipid protein</td>
</tr>
<tr>
<td>RR</td>
<td>rate ratio</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>UVR</td>
<td>ultraviolet radiation</td>
</tr>
<tr>
<td>VCA</td>
<td>viral capsid antigen, viral protein of Epstein-Barr virus</td>
</tr>
<tr>
<td>VZV</td>
<td>varicella zoster virus</td>
</tr>
</tbody>
</table>