Identifying and Managing Soil Salinity at Multiple Spatial Scales on King Island, Tasmania

University of Tasmania
School of Earth Sciences and School of Agricultural Science

September 2008

A Research Thesis submitted to fulfil the requirement of the Degree of Master of Science.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text of this thesis.

Authority of Access

This thesis is to be made available for limited copying or loan in accordance with the Copyright Act of 1968.

Signed

Neil Meadows
Abstract

Soil salinity is a major determinant of agricultural productivity in many regions of Australia. Soil salinity is also spatially variable. This thesis examines the application of electromagnetic induction geophysical techniques and coincident soil sampling to (1) represent the areal extent and magnitude of soil salinity on the agricultural areas of King Island, Tasmania, (2) constitute its major causes; and (3) address mitigation strategies.

An automated electromagnetic induction meter used in the vertical dipolar mode (EM31v) was used to capture apparent total soil conductivity data over 15,420 Ha of the island. A total of 447 soil samples were obtained from sixty-one soil sample holes typically to 350 cm below surface. Ordinary least squares-based regression methods were used to predict average EC_e at the soil sample sites using the conductivity data (EC_a) assessed by the EM31v ($R^2 = 0.76$, p-value = 0.0001). A local, exponential semi-variogram kriging model was developed to interpolate average EC_e to 350 cm depth across the surveyed area. An analysis of geographic information layers, further terrain modelling, and climatic estimates of salt accessions were used to isolate the geological, geomorphological and climatic determinants of soil EC_e on the island.

Across the island the major source of salt is from west coast generated sea spray. Down to 350 cm, the highest average soil conductivity (EC_e of 8 dS/m and above) were found to occur in soils formed on Proterozoic granite, Proterozoic shale and undifferentiated Quaternary sediments. A long-term climate prediction, compelled by climate change forecasts of less rainfall to flush salt from these lithologies by 2030, is that the risk of salinisation in these areas will increase (by 10 %). Terrain morphology was found to be a good predictor of high EC_e on Proterozoic shale, but was found to be unrelated to EC_e on other lithologies. More generally, high EC_e in soils formed on granite were observed to occur at the valley floors and toward the crests of hills. Elevation and geological data were used to estimate the spatial location of high EC_e to 350 cm depth across the entire island (103,000 hectares).
At the landscape scale, hydrogeology was considered to be a potential determinant of elevated soil ECe. Soil ECe at valley floors and drained wetlands is associated with salt deposition by capillary action from shallow, highly saline water tables. On sloping land, the lateral flow of groundwater is expressed as saline seepage at break-of-slope areas.

At a finer scale, areas of low permeability subsoil restrict water percolation in several of the island’s soil types, causing the development of perched water tables and localised near surface salinity. High surface salinity levels, compared to levels at 50 cm depth, occur without attendant high groundwater levels in some soil types. In these instances, it is suggested that topsoil compaction by livestock has reduced topsoil hydraulic conductivity, reducing the flushing of salt from the topsoil. Under these conditions increased surface and topsoil salinisation is exacerbated by evaporation, however, more research would be required to confirm this theory. If proven, the predicted drop in flushing rains due to climate change is likely to exacerbate this style of salinisation in the future.

Previous soil salinity mapping programs on King Island have been undertaken at the land system scale, thus assuming that characteristics within land system units are homogeneous. Assessed against the results shown in this thesis, the assumption of land system uniformity is shown to be incorrect. Salinity management decisions based on prior land system salinity maps may also have been incorrect.

The soil ECe maps produced in this thesis may be used to improve sustainable farm management on the island. The maps are currently being used in the development of an Environmental Management System for landholders on the island.
Acknowledgements

Thank you to my supervisors Garry Davidson and Richard Doyle.

Thank you to those that gave their time, support and advice while I was in the field, in the laboratory, processing data, and writing and printing this thesis:

Mark Curtin, Fraser Hopwood, Melanie Kelly, Matthew Miller, Robert Musk, Sheri Parsons, Kim Portlock, James Reid, Adam Uytendaal, Dan Warfe, and Brett Whelan.

Thank you to the farmers of King Island and the King Island Natural Resource Management Committee Inc., in particular Ken Baker and Donald Graham. I hope this thesis can help you in your NRM.

Thank you to my parents and my family Jen, Charlie and Edith.
Table of Contents

Declaration...ii
Abstract.. iii
Acknowledgements..v
Table of Contents ...vi
List of Figures .. viii
List of Tables ...xi
List of Maps ..xii

Chapter 1. Introduction...1
 1.1. The problem of scale..2
 1.2. The study area and the purpose of this thesis ..4
 1.3. Thesis structure ..7

Chapter 2. Australian dryland salinity formation and detection: a review8
 2.1. Causes of salinisation at the macro- and upper meso-scales8
 2.2. Causes of salinisation at the lower meso- and micro-scales13
 2.2.1. Salinisation due to a high water table ..14
 2.2.2. Salinisation without a high water table..15
 2.3. Measuring salinity by electrical conductivity..17
 2.3.1. Measurements in the laboratory...17
 2.3.2. Measuring and mapping salinisation ...18
 2.4. Sources of salt ..22
 2.4.1. Rainfall (and evaporation) ...22
 2.4.2. Sea Spray ...23
 2.4.3. Weathering...23
 2.5. Political history and salinity management programs27

Chapter 3. The climatic and geophysical characteristics of King Island and previous
salinity investigations..30
 3.1. Climatic features and rainfall..30
 3.2. Geology and geomorphology...32
 3.3. Soil mapping units ...34
 3.3.1. Soil on the highland plateau...34
 3.3.2. Soils on the plains country...39
 3.3.3. Swamp soils ...41
 3.3.4. Soils on the dunes ..41
 3.4. Groundwater Flow Systems...42
 3.5. Vegetation..46
 3.6. Previous salinity investigations and mapping..46
Chapter 4. Detailed aims, materials and methods .. 51
 4.1. Thesis aims ... 51
 4.2. EM Survey ... 52
 4.2.1. Kriging EC_a .. 56
 4.2.2. Terrain modelling ... 58

Chapter 5. Results .. 60
 5.1. Climatic Observations .. 60
 5.2. EM survey .. 60
 5.2.1. Terrain Modelling .. 63
 5.3. Lake Flannigan ... 65
 5.4. Egg Lagoon .. 69
 5.5. Yellow Rock .. 73
 5.6. Currie ... 83
 5.7. South Road ... 87

Chapter 6. Discussion ... 91
 6.1. Reliability of the EM31 for salinisation mapping .. 91
 6.2. Variability of salinisation within land systems ... 92
 6.2.1. Groundwater flow systems (GFS) ... 95
 6.3. Biophysical determinants of salinisation .. 97
 6.3.1. Climatic determinants .. 97
 6.3.2. Geological and soil determinants ... 101
 6.4. Salinisation models on the various geomorphic landforms 103
 6.4.1. The highland plateau ... 104
 6.4.2. The undulating plains and slopes ... 105
 6.4.3. The Yellow Rock River basin ... 106
 6.4.4. The drained swamps ... 108
 6.4.5. The near-coastal dunes ... 110
 6.5. A summary of macro- and meso-scale salinisation on King Island 111
 6.6. Micro-scale salinisation on King Island .. 112
 6.7. Scale and salinisation management – issues to consider 118

Chapter 7. Conclusions .. 123

References .. 130

Appendix A: Soil Sample Site Locations, Depth to Rock and Groundwater Salinity on
King Island ... 140
Appendix B: Soil Texture and Salinity .. 142
Appendix C: Salinity Trends with Increasing Soil Depth 154
Appendix D: Linear Correlation Analysis and Model Parameter Statistics for EC_a and
 EC_e .. 162
Appendix E: Regression Analysis and Model Parameter Statistics – Salinity and
 Terrain Profile Curvature on Different Geological Units at 160 m Pixel Scale 163
Appendix F: Regression Analysis and Model Parameter Statistics – Salinity and
 Terrain profile Curvature on Different Geological Units at 80 m Pixel Scale 165
List of Figures

Figure 1: The various scales at which salinisation and its management occur.............3
Figure 2: King Island is situated along the western margin of Bass Strait5
Figure 3: A map of King Island (TASMAP, 1997). ..6
Figure 4: A schematic representation of the hydrologic cycle and salinisation in a
Western Australian catchment (Bettenay et al. 1964).9
Figure 5: GFS are broadly classed as local, intermediate or regional.12
Figure 6: A typical salinity profile of soil exposed to high and salty groundwater
(adapted from Ayres and Westcot 1976). ..15
Figure 7: A typical salinity profile of a soil unexposed to a high water table (Jenkins
1982). ..16
Figure 8: Electrical current in soil and water can follow three pathways as originally
described by Rhoades et al. (1989): (1) in solid soil and water, (2) in water only,
and (3) in the solid soil only. ..19
Figure 9: The concept of GFS is the foundation of salinity risk assessment and
subsequent salinity management (Robins et al. 2003).......................................28
Figure 10: Mean annual rainfall across Tasmania (Source: BOM 2006).31
Figure 11: Monthly rainfall averages at Currie and Pan A evaporation predicted from
the Bureau of Meteorology (BOM 2008). ..31
Figure 12: Bedrock geology map of King Island. The numbers in the figure refer to
sample plot numbers in Berry et al. (2005). ...33
Figure 13: The relief of King Island above sea level (m).35
Figure 14: Geology of King Island including the distribution of unconsolidated
materials (adapted from Calver et al. 2005). ..36
Figure 15: King Island’s surface drainage pattern and land parcels.37
Figure 16: Soil mapping units of King Island (Stephens & Hosking, 1932).............38
Figure 17: Pegarah fine sandy-loam soil map unit comprise 370 km² of the island
(adapted from Stephens and Hosking 1932). ..39
Figure 18: Naracoopa sand soil map unit comprise 106 km² of the island (adapted
from Stephens and Hosking 1932). ..40
Figure 19: Lappa sand soil map unit comprise 257 km² of the island (adapted from
Stephens and Hosking 1932). ..41
Figure 20: Taroona sand soil map unit comprise 81 km² of the island (adapted from
Stephens and Hosking 1932). ..42
Figure 21: The three major groundwater flow systems on King Island (Latinovic et al.
2002). ..44
Figure 22: Vegetation communities of King Island (Source: Tasmanian Vegetation
Mapping Program, Department of Primary Industries and Water)47
Figure 23: Land systems containing areas of salinity on private freehold land (Grice,
1995). ..49
Figure 24: Land systems containing areas of salinity (King Island Natural Resource
Management Committee 1998). ...50
Figure 25: The EM31v mounted on an ATV ...52
Figure 26: The linearity of the EM31 response. The solid line represents the non-linear characteristics of the EM31 on soil of high ground conductivity (note the logarithmic scale). The dashed line represents corrected conductivity (adapted from McNeill 1980a).

Figure 27: The relative response of the secondary conductivity signal from the EM31 (adapted from McNeill 1980a).

Figure 28: The rotary action drill used for soil sampling.

Figure 29: An example of a variogram model with some of the variogram parameters shown (adapted from Golden Software 1999).

Figure 30: VESPER fits a variogram model to the collected data within the search neighbourhood to predict a value for an estimation point (Minasny et al. 2005).

Figure 31: Monthly rainfall at Currie post office during the study period and predicted average Pan A evaporation from the Bureau of Meteorology (B.O.M. 2008).

Figure 32: The number of groundwater samples assessed on King Island and their salinity class (Hart 1974).

Figure 33: Relationship between average ECe at the numbered soil sample drill sites and ECa on King Island assessed by the EM31.

Figure 34: Soil salinity classes and contours at the Lake Flannigan site.

Figure 35: Proterozoic granite outcrops on the eastern shoreline of Lake Flannigan.

Figure 36: Soil salinity classes and contours at Egg Lagoon.

Figure 37: Contour map showing the change in topography at 1 m intervals draped over the salinity classes.

Figure 38: Terrain modelling from DEMs is a good predictor of the broad scale salinity pattern associated with soil derived from Proterozoic shale but is a poor predictor of salinity on the undifferentiated Quaternary sediments.

Figure 39: Depth and salinity of groundwater along a 2.7 km transect located toward the bottom of the Yellow Rock catchment.

Figure 40: Depth to groundwater trends in the lower Yellow Rock catchment (King Island Natural Resource Management Committee 2005).

Figure 41: Soil salinity classes, drainage and 1 m contours at the Currie site.

Figure 42: Soil salinity classes and contours at the South Road site.

Figure 43: Estimates of salinisation around Yellow Rock River by: (a) Grice (1995), (b) in this study; and (c) by the King Island Natural Resource Management Committee (1998).

Figure 44: The volume of sodium molecules contained within different sized sea spray during 2001 at Cape Grim on the Tasmanian mainland (Ayres et al. 1999).

Figure 45: Rates of aerosol deposition from west coast generated sea spray following the findings of de Leeuw et al. (2000).

Figure 46: Salinity storage and slope position on Proterozoic granite at Lake Flannigan and Proterozoic shale at South Road. In this case, topsoil is the top 50 cm of soil.

Figure 47: Salinisation model for the Nugara sandy-loam, Naracoopa, Lappa and Taroona sands occurring on the slopes and undulating plains. The red and blue colours represent comparisons of high and low salt content, respectively.

Figure 48: Salinisation model in the Yellow Rock River basin (below 20 m ASL).

Figure 49: Salinisation model for the Swamp soils at Reedy Lake (Lake Flannigan).

Refer to Figure 48 for the causes of salinity at the meso-scale in the basin.

Figure 50: Salinisation model for the Swamp soils at Egg Lagoon. Refer to Figure 48 for the causes of salinity at the meso-scale in the basin.
Figure 51: Salinisation model for the Pleistocene old dune and Holocene new dune systems on King Island.................................110
Figure 52: Soil sample sites that exhibited unconventional salinity profiles...........115
Figure 53: A theoretical salinisation model occurring at the micro-scale in King Island soil...117
List of Tables

Table 1: Catchment classification of salinisation based on GFS characteristics (Coram 1998). ...11
Table 2: Commonly used conversion factors for EC\textsubscript{1.5} to EC\textsubscript{e} (Taylor 1993).............18
Table 3: Land system salinity classification criteria (Grice, 1995).48
Table 4: Groundwater salinity classes (Hart 1974). ..56
Table 5: Classes of soil salinity assigned to EC\textsubscript{e} predictions (Taylor, 1993)..........56
Table 6: A comparison between the critical attributes associated with the GFS on
 King Island as listed in Latinovic \textit{et al.} (2002) and as measured in this study....96
Table 7: A summary of the causes of salinisation (from Chapter 2)104
Table 8: Associations between the geology and soil units on King Island and the
 occurrence of highly saline soil (>8 dS/m). ..111
Table 9: A summary of the causes of soil salinity at multiple spatial scales on King
 Island..123
List of Maps

Map 1. King Island soil apparent conductivity, 0 - 350 cm depth June 2005.............62
Map 2. King Island predicted average soil salinity between 0 - 350 cm depth on 15,420 hectares...64
Map 3. Lake Flannigan - Predicted average soil salinity at 0 - 350 cm depth June 2005...66
Map 4. Egg Lagoon - Predicted average soil salinity at 0 - 350 cm depth June 2005.......70
Map 5. Yellow Rock - Predicted average soil salinity at 0 - 350 cm depth June 2005......74
Map 5a. Yellow Rock – Soil and groundwater salinity and depth (cm)......................75
Map 6. Currie - Predicted average soil salinity at 0 - 350 cm depth June 2005...........84
Map 7. South Road - Predicted average soil salinity at 0 - 350 cm depth June 2005.......88
Map 8. The likelihood of encountering very- and extremely-saline soil between 0 - 350 cm depth...112