Open Access Repository

Items where Author is "Aryal, J"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Item Type | No Grouping
Number of items: 24.

Article

Feizizadeh, B, Roodposhti, MS, Blaschke, T and Aryal, J ORCID: 0000-0002-4875-2127 2017 , 'Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping' , Arabian Journal of Geosciences, vol. 10, no. 5 , pp. 1-13 , doi: 10.1007/s12517-017-2918-z.

Garg, S ORCID: 0000-0003-3510-2464, Aryal, J ORCID: 0000-0002-4875-2127, Wang, H, Shah, T, Kecskemeti, G and Ranjan, R 2018 , 'Cloud computing based bushfire prediction for cyber-physical emergency applications' , Future Generation Computer Systems, vol. 79 , pp. 354-363 , doi: 10.1016/j.future.2017.02.009.

Ghorbanzadeh, O, Blaschke, T, Aryal, J ORCID: 0000-0002-4875-2127 and Gholaminia, K 2018 , 'A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping' , Journal of Spatial Science , pp. 1-18 , doi: 10.1080/14498596.2018.1505564.

Ghorbanzadeh, O, Blaschke, T, Gholamnia, K and Aryal, J ORCID: 0000-0002-4875-2127 2019 , 'Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables' , Fire, vol. 2, no. 3 , pp. 1-27 , doi: 10.3390/fire2030050.

Ghorbanzadeh, O, Blaschke, T, Gholamnia, K, Meena, SR, Tiede, D and Aryal, J ORCID: 0000-0002-4875-2127 2019 , 'Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection' , Remote Sensing, vol. 11, no. 2 , pp. 1-21 , doi: 10.3390/rs11020196.

Ghorbanzadeh, O, Meena, SR, Blaschke, T and Aryal, J ORCID: 0000-0002-4875-2127 2019 , 'UAV-based slope failure detection using deep-learning convolutional neural networks' , Remote Sensing, vol. 11, no. 17 , pp. 1-24 , doi: 10.3390/rs11172046.

Ghorbanzadeh, O, Valizadeh Kamran, K, Blaschke, T, Aryal, J ORCID: 0000-0002-4875-2127, Naboureh, A, Einali, J and Bian, J 2019 , 'Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches' , Fire, vol. 2, no. 3 , pp. 1-23 , doi: 10.3390/fire2030043.

Hardy, A ORCID: 0000-0003-1461-2967, Aryal, J ORCID: 0000-0002-4875-2127 and Wells, MP 2019 , 'Comparing techniques for tracking: the case of Tourism Tracer in Tasmania, Australia' , E-review of Tourism Research, vol. 16, no. 2/3 , pp. 84-94 .

Lay, SU, Pradhan, B, Yusoff, ZBM, Abdallah, AFB, Aryal, J ORCID: 0000-0002-4875-2127 and Park, H-J 2019 , 'Data mining and statistical approaches in debris-flow susceptibility modelling using airborne LiDAR data' , Sensors, vol. 19, no. 16 , pp. 1-32 , doi: 10.3390/s19163451.

Ozaki, M, Aryal, J ORCID: 0000-0002-4875-2127 and Fox-Hughes, P 2019 , 'Dynamic wildfire navigation system' , International Journal of Geo-Information, vol. 8, no. 4 , pp. 1-21 , doi: 10.3390/ijgi8040194.

Rajbhandari, S, Aryal, J ORCID: 0000-0002-4875-2127, Osborn, J ORCID: 0000-0003-2278-3766, Musk, R and Lucieer, A ORCID: 0000-0002-9468-4516 2017 , 'Benchmarking the applicability of ontology in geographic object-based image analysis' , ISPRS International Journal of Geo-Information, vol. 6 , pp. 1-24 , doi: 10.3390/ijgi6120386.

Roodposhti, MS, Aryal, J ORCID: 0000-0002-4875-2127 and Pradhan, B 2019 , 'A novel rule-based approach in mapping landslide susceptibility' , Sensors, vol. 19, no. 10 , pp. 1-20 , doi: 10.3390/s19102274.

Book Section

Rajbhandari, S, Aryal, J ORCID: 0000-0002-4875-2127, Osborn, J ORCID: 0000-0003-2278-3766, Lucieer, A ORCID: 0000-0002-9468-4516 and Musk, R 2018 , 'Employing ontology to capture expert intelligence within GEOBIA: automation of the interpretation process', in RA White and A Coltekin and RR Hoffman (eds.), Remote Sensing and Cognition: Human Factors in Image Interpretation , Taylor and Francis Group, United States, pp. 151-175.

Conference Publication

Minh-Thai, TN, Aryal, J ORCID: 0000-0002-4875-2127, Samarasinghe, J and Levin, M 2018 , 'A computational framework for autonomous self-repair systems', in T Mitrovic and B Xue and X Li (eds.), Proceedings of the 31st Australasian Joint Conference on Artificial Intelligence (AI 2018) , Springer, Switzerland, pp. 1-6 , doi: 10.1007/978-3-030-03991-2.

This list was generated on Mon Oct 14 01:48:36 2019 AEDT.
TOP